Random sample of matrices in SO(p).

1 | ```
rsop(n, p)
``` |

`n` |
The sample size, the number of matrices you want to generate. |

`p` |
The dimensionality of the matrices. |

The idea is very simple. Start with a unit vector pointing at the north pole (1,0,...,0). Then generate random numbers from a standard normal and scale them so that they have a unit length. To put it differently, a sample of n values from the uniform distribution on the sphere is generated. Then calculate the rotation matrix required to go from the north pole to each of a generated vector.

If n = 1 one matrix is returned. If n is greater than 1, an array with n matrices inside.

Michail Tsagris R implementation and documentation: Michail Tsagris <mtsagris@yahoo.gr> and Giorgos Athineou <athineou@csd.uoc.gr>

G. J. A. Amaral, I. L. Dryden & Andrew T. A. Wood (2007). Pivotal Bootstrap Methods for k-Sample Problems in Directional Statistics and Shape Analysis. Journal of the American Statistical Association, 102(478): 695-707.

```
rotation, Arotation, rot.matrix
```

1 2 3 |

Questions? Problems? Suggestions? Tweet to @rdrrHQ or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.