Contour plots of some rotationally symmetric distributions | R Documentation |
Contour plots of some rotationally symmetric distributions.
vmf.contour(k)
spcauchy.contour(mu, rho, lat = 50, long = 50)
purka.contour(theta, a, lat = 50, long = 50)
pkbd.contour(mu, rho, lat = 50, long = 50)
k |
The concentration parameter. |
mu |
The mean direction (unit vector) of the von Mises-Fisher, the IAG, the spherical Cauchy distribution, or the Poisson kernel-based distribution. |
rho |
The |
theta |
The median direction for the Purkayastha distribution, a unit vector. |
a |
The concentration parameter of the Purkayastha distribution. |
lat |
A positive number determing the range of degrees to move left and right from the latitude center. See the example to better understand this argument. |
long |
A positive number determing the range of degrees to move up and down from the longitude center. See the example to better understand this argument. |
The user specifies the concentration parameter only and not the mean direction or data. This is for illustration purposes only. The graph of the von Mises-Fisher distribution will always contain circles, as this distribution is the analogue of a bivariate normal in two dimensions with a zero covariance.
A contour plot of the distribution.
Michail Tsagris and Christos Adam.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr and Christos Adam pada4m4@gmail.com.
Tsagris M. and Papastamoulis P. (2024). Directional data analysis using the spherical Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.
Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from the Mobius transformations. Bernoulli, 26(4): 3224–3248. https://arxiv.org/pdf/1510.07679.pdf
Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Maximum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70–83
Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications in Statistics-Theory and Methods, 19(6): 1973–1986.
Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence properties, identifiability, and a method of sampling. Journal of Computational and Graphical Statistics, 29(4): 758–770.
Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution. Electronic Journal of Statistics, 17(2): 2180–2209.
rvmf, vmf.mle, vmf.kerncontour, kent.contour, sphereplot
vmf.contour(5)
mu <- colMeans( as.matrix( iris[,1:3] ) )
mu <- mu / sqrt( sum(mu^2) )
spcauchy.contour(mu, 0.7, 30, 30)
spcauchy.contour(mu, 0.7, 60, 60)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.