Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(DivInsight)
data("Colombia")
library(vegan)
## -----------------------------------------------------------------------------
# use coordinates to clusterise data
Colombia_coordinate_ref <- clusterise_sites(
dataframe =
subset_by_coordinate_ref(
dataframe = Colombia,
coordinate_reference = c(-73.487520, 7.539986),
distance_threshold = 50000
),
cluster_min_length = 30
)
## -----------------------------------------------------------------------------
# regroup sites with a radius of 1km
cref_1km <- site_regroup(
clusterised_object = Colombia_coordinate_ref,
regroup_radius = 1000
)
## -----------------------------------------------------------------------------
cref_1km_spectables <- generate_spec_tables(
clusterised_object = cref_1km,
min_individuals = 30,
min_species = 10
)
## -----------------------------------------------------------------------------
# view the names of each table
print(names(cref_1km_spectables))
# store the chosen species tables into a single list
species_table_list <- list(
cref_1km_spectables$`17.2022-04-04`,
cref_1km_spectables$`29.2022-04-02`,
cref_1km_spectables$`16.2022-04-01`,
cref_1km_spectables$`26.2022-03-31`,
cref_1km_spectables$`1.2022-03-30`,
cref_1km_spectables$`28.2022-03-29`,
cref_1km_spectables$`18.2022-03-28`,
cref_1km_spectables$`27.2022-03-26`,
cref_1km_spectables$`9.2022-03-25`,
cref_1km_spectables$`25.2022-03-23`,
cref_1km_spectables$`8.2022-03-21`,
cref_1km_spectables$`7.2022-03-19`,
cref_1km_spectables$`24.2022-03-07`,
cref_1km_spectables$`23.2022-03-06`,
cref_1km_spectables$`19.2022-03-05`,
cref_1km_spectables$`22.2022-02-27`,
cref_1km_spectables$`21.2022-02-15`,
cref_1km_spectables$`20.2022-02-14`
)
# generate a species composition matrix
SCM1 <- generate_speccomm(species_table_list)
## -----------------------------------------------------------------------------
# change the row names of the matrix
SCM1 <- as.data.frame(SCM1)
row.names(SCM1) <- c(
"17.2022-04-04",
"29.2022-04-02",
"16.2022-04-01",
"26.2022-03-31",
"1.2022-03-30",
"28.2022-03-29",
"18.2022-03-28",
"27.2022-03-26",
"9.2022-03-25",
"25.2022-03-23",
"8.2022-03-21",
"7.2022-03-19",
"24.2022-03-07",
"23.2022-03-06",
"19.2022-03-05",
"22.2022-02-27",
"21.2022-02-15",
"20.2022-02-14"
)
SCM1 <- as.matrix(SCM1)
## ---- fig.show='hold', fig.width=5, fig.height=3------------------------------
# create a species accumulation curve
speccurve1 <- specaccum(SCM1, method = "random")
# plot the species accumulation curve
plot(speccurve1, ci.type="poly",
col="blue",
ci.col="lightblue",
main = "Species accumulation curve for 18 Sites"
)
# view the predictions from the species accumulation curve
print(speccurve1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.