Nothing
context("Network attributes with arrivals")
test_that("Updating attributes in open populations", {
nw <- network_initialize(n = 50)
nw <- set_vertex_attribute(nw, attrname = "group", rep(1:2, each = 25))
formation <- ~edges + nodefactor("group")
target.stats <- c(25, 36)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), 38,
d.rate = 0.002)
est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
probs <- c(0.2055, 0.0088, 0.0614, 0)
durs <- c(3, 100, 9, 10)
inf.probs <- rep(probs, durs)
inf.probsf <- inf.probs * 2
param <- param.net(inf.prob = inf.probs, act.rate = 1,
inf.prob.g2 = inf.probs,
a.rate = 0.05, a.rate.g2 = NA,
ds.rate = 0.05, ds.rate.g2 = 0.05,
di.rate = 0.05, di.rate.g2 = 0.05)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 20, nsims = 1,
resimulate.network = TRUE, verbose = FALSE)
sim1 <- netsim(est1, param, init, control)
expect_is(sim1, "netsim")
})
test_that("SIR model with epi.by parameter", {
skip_on_cran()
nw <- network_initialize(n = 50)
nw <- set_vertex_attribute(nw, attrname = "race", rep(0:1, each = 25))
formation <- ~edges + nodefactor("race")
target.stats <- c(25, 25)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), 50)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
param <- param.net(inf.prob = 0.1, act.rate = 1, rec.rate = 0.005)
init <- init.net(i.num = 10, r.num = 0)
control <- control.net(type = "SIR", nsteps = 10, nsims = 1,
epi.by = "race", verbose = FALSE, verbose.int = 0)
sim <- netsim(est, param, init, control)
expect_is(sim, "netsim")
expect_true(all(c("s.num.race0", "s.num.race1", "i.num.race0", "i.num.race1",
"r.num.race0", "r.num.race1") %in% names(sim$epi)))
})
test_that("Serosorting model in open population", {
skip_on_cran()
n <- 100
nw <- network_initialize(n = n)
prev <- 0.2
infIds <- sample(1:n, n * prev)
nw <- set_vertex_attribute(nw, "status", "s")
nw <- set_vertex_attribute(nw, "status", "i", infIds)
nw <- set_vertex_attribute(nw, "race", rbinom(n, 1, 0.5))
formation <- ~edges + nodefactor("status", levels = -1) +
nodematch("status") + nodematch("race")
target.stats <- c(36, 55, 25, 18)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), 5, d.rate = 0.01)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
param <- param.net(inf.prob = 0.8, a.rate = 0.05,
ds.rate = 0.01, di.rate = 0.01)
init <- init.net()
control <- control.net(type = "SI", nsteps = 20, nsims = 1,
nwstats.formula = ~edges +
meandeg +
nodefactor("status",
levels = NULL) +
nodematch("status"),
tergmLite = FALSE,
resimulate.network = TRUE,
save.run = TRUE,
verbose = FALSE)
sim <- netsim(est, param, init, control)
expect_is(sim, "netsim")
nD <- get_network(sim)
tea1 <- get.vertex.attribute.active(nD, "testatus", at = 1)
expect_true(sum(!is.na(tea1)) == n)
tea20 <- get.vertex.attribute.active(nD, "testatus", at = 20)
expect_true(sum(is.na(tea20)) == 0)
fstat.nw <- get_vertex_attribute(nD, "status")
fstat.attr <- sim$run[[1]]$attr$status
expect_identical(tea20, fstat.nw)
expect_identical(fstat.nw, fstat.attr)
})
test_that("Serosorting model in closed population", {
skip_on_cran()
n <- 100
nw <- network_initialize(n = n)
prev <- 0.2
infIds <- sample(1:n, n * prev)
nw <- set_vertex_attribute(nw, "status", "s")
nw <- set_vertex_attribute(nw, "status", "i", infIds)
nw <- set_vertex_attribute(nw, "race", rbinom(n, 1, 0.5))
formation <- ~edges + nodefactor("status", levels = -1) +
nodematch("status") + nodematch("race")
target.stats <- c(36, 55, 25, 18)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), 5)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
param <- param.net(inf.prob = 0.8)
init <- init.net()
control <- control.net(type = "SI", nsteps = 20, nsims = 1,
nwstats.formula = ~edges +
meandeg +
nodefactor("status", levels = NULL) +
nodematch("status"),
tergmLite = FALSE,
resimulate.network = TRUE,
save.run = TRUE,
verbose = FALSE)
sim <- netsim(est, param, init, control)
expect_is(sim, "netsim")
nD <- get_network(sim)
nD
tea1 <- get.vertex.attribute.active(nD, "testatus", at = 1)
expect_true(sum(!is.na(tea1)) == n)
tea20 <- get.vertex.attribute.active(nD, "testatus", at = 20)
expect_true(sum(is.na(tea20)) == 0)
fstat.nw <- get_vertex_attribute(nD, "status")
fstat.attr <- sim$run[[1]]$attr$status
expect_identical(tea20, fstat.nw)
expect_identical(fstat.nw, fstat.attr)
})
test_that("Serosorting model in open population, with tergmLite", {
skip_on_cran()
n <- 100
nw <- network_initialize(n = n)
prev <- 0.2
infIds <- sample(1:n, n * prev)
nw <- set_vertex_attribute(nw, "status", "s")
nw <- set_vertex_attribute(nw, "status", "i", infIds)
nw <- set_vertex_attribute(nw, "race", rbinom(n, 1, 0.5))
formation <- ~edges + nodefactor("status", levels = -1) +
nodematch("status") + nodematch("race")
target.stats <- c(36, 55, 25, 18)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), 5, d.rate = 0.01)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
param <- param.net(inf.prob = 0.8, a.rate = 0.05,
ds.rate = 0.01, di.rate = 0.01)
init <- init.net()
control <- control.net(type = "SI", nsteps = 20, nsims = 1,
nwstats.formula = ~edges +
meandeg +
nodefactor("status", levels = NULL) +
nodematch("status"),
tergmLite = TRUE,
resimulate.network = TRUE,
save.run = TRUE,
verbose = FALSE)
sim <- netsim(est, param, init, control)
expect_is(sim, "netsim")
})
test_that("Save attributes to output", {
skip_on_cran()
nw <- network_initialize(n = 50)
nw <- set_vertex_attribute(nw, "group", rep(1:2, each = 25))
formation <- ~edges + nodematch("group")
target.stats <- c(25, 0)
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), 38,
d.rate = 0.01)
est1 <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
param <- param.net(inf.prob = 0.2, act.rate = 1,
inf.prob.g2 = 0.2,
a.rate = 0.01, a.rate.g2 = NA,
ds.rate = 0.01, ds.rate.g2 = 0.01,
di.rate = 0.01, di.rate.g2 = 0.01)
init <- init.net(i.num = 10, i.num.g2 = 10)
control <- control.net(type = "SI", nsteps = 10, nsims = 2,
save.run = TRUE, resimulate.network = TRUE,
verbose = FALSE)
sim1 <- netsim(est1, param, init, control)
expect_is(sim1, "netsim")
expect_is(sim1$run[[1]]$attr, "list")
expect_true(all(c("entrTime", "exitTime") %in% names(sim1$run[[1]]$attr)))
})
test_that("Check TE Status Variable Against Epi Stats", {
skip_on_cran()
nw <- network_initialize(n = 100)
formation <- ~edges
target.stats <- 50
coef.diss <- dissolution_coefs(dissolution = ~offset(edges), 38)
est <- netest(nw, formation, target.stats, coef.diss, verbose = FALSE)
# SIR
param <- param.net(inf.prob = 0.4, act.rate = 2, rec.rate = 0.01)
init <- init.net(i.num = 10, r.num = 0)
control <- control.net(type = "SIR", nsims = 1, nsteps = 100, verbose = FALSE)
sim <- netsim(est, param, init, control)
times <- sample(1:100, 10)
for (at in times) {
df <- as.data.frame(sim)[at, ]
nwd <- get_network(sim, collapse = TRUE, at = at)
attr <- get_vertex_attribute(nwd, "testatus")
expect_true(sum(attr == "s") == df$s.num)
expect_true(sum(attr == "i") == df$i.num)
expect_true(sum(attr == "r") == df$r.num)
}
# SIS
param <- param.net(inf.prob = 0.4, act.rate = 2, rec.rate = 0.01)
init <- init.net(i.num = 10)
control <- control.net(type = "SIS", nsims = 1, nsteps = 100, verbose = FALSE)
sim <- netsim(est, param, init, control)
times <- sample(1:100, 10)
for (at in times) {
df <- as.data.frame(sim)[at, ]
nwd <- get_network(sim, collapse = TRUE, at = at)
attr <- get_vertex_attribute(nwd, "testatus")
expect_true(sum(attr == "s") == df$s.num)
expect_true(sum(attr == "i") == df$i.num)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.