ClusterApply | R Documentation |
Applies a given function to each dimension d
of data separately for each cluster
ClusterApply(DataOrDistances,FUN,Cls,Simple=FALSE,...)
DataOrDistances |
[1:n,1:d] with: if d=n and symmetric then distance matrix assumed, otherwise: [1:n,1:d] matrix of defining the dataset that consists of |
FUN |
Function to be applied to each cluster of data and each column of data |
Cls |
[1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. |
Simple |
Boolean, if TRUE, simplifies output |
... |
Additional parameters to be passed on to FUN |
Applies a given function to each feature of each cluster of data using the clustering stored in Cls
which is the cluster identifiers for all rows in data. If missing, all data are in first cluster, The main output is FUNPerCluster[i]
which is the result of FUN
for the data points in cluster of UniqueClusters[i]
named with the function's name used.
In case of a distance matrix an automatic classical multidimensional scaling transformation of distances to data is computed. Number of dimensions is selected by the minimal stress w.r.t. the possible output dimensions of cmdscale.
If FUN
has not function name, then ResultPerCluster is given back.
if(Simple==FALSE) List with
UniqueClusters |
The unique clusters in Cls |
FUNPerCluster |
a matrix of [1:k,1:d] of d features and k clusters, the list element is named by the function |
if(Simple==TRUE)
a matrix of [1:k,1:d] of d features and k clusters
Felix Pape, Michael Thrun
##one dataset
data(Hepta)
Data=Hepta$Data
Cls=Hepta$Cls
#mean per cluster
ClusterApply(Data,mean,Cls)
#Simplified
ClusterApply(Data,mean,Cls,Simple=TRUE)
# Mean per cluster of MDS transformation
# Beware, this is not the same!
ClusterApply(as.matrix(dist(Data)),mean,Cls)
## Not run:
Iris=datasets::iris
Distances=as.matrix(Iris[,1:4])
SomeFactors=Iris$Species
V=ClusterCreateClassification(SomeFactors)
Cls=V$Cls
V$ClusterNames
ClusterApply(Distances,mean,Cls)
## End(Not run)
#special case of identity
## Not run:
suppressPackageStartupMessages(library('prabclus',quietly = TRUE))
data(tetragonula)
#Generated Specific Distance Matrix
ta <- alleleconvert(strmatrix=as.matrix(tetragonula[1:236,]))
tai <- alleleinit(allelematrix=ta,distance="none")
Distance=alleledist((unbuild.charmatrix(tai$charmatrix,236,13)),236,13)
MDStrans=ClusterApply(Distance,identity)$identityPerCluster
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.