HierarchicalDBSCAN | R Documentation |
Hierarchical DBSCAN clustering [Campello et al., 2015].
HierarchicalDBSCAN(DataOrDistances,minPts=4,
PlotTree=FALSE,PlotIt=FALSE,...)
DataOrDistances |
Either a [1:n,1:d] matrix of dataset to be clustered. It consists of n cases of d-dimensional data points. Every case has d attributes, variables or features. or a [1:n,1:n] symmetric distance matrix. |
minPts |
Classic smoothing factor in density estimates [Campello et al., 2015, p.9] |
PlotIt |
Default: FALSE, If TRUE plots the first three dimensions of the dataset with colored three-dimensional data points defined by the clustering stored in |
PlotTree |
Default: FALSE, If TRUE plots the dendrogram. If minPts is missing, PlotTree is set to TRUE. |
... |
Further arguments to be set for the clustering algorithm, if not set, default arguments are used. |
"Computes the hierarchical cluster tree representing density estimates along with the stability-based flat cluster extraction proposed by Campello et al. (2013). HDBSCAN essentially computes the hierarchy of all DBSCAN* clusterings, and then uses a stability-based extraction method to find optimal cuts in the hierarchy, thus producing a flat solution."[Hahsler et al., 2019]
It is claimed by the inventors that the minPts parameter is noncritical [Campello et al., 2015, p.35]. minPts is reported to be set to 4 on all experiments [Campello et al., 2015, p.35].
List of
Cls |
[1:n] numerical vector defining the clustering; this classification is the main output of the algorithm. Points which cannot be assigned to a cluster will be reported as members of the noise cluster with 0. |
Dendrogram |
Dendrogram of hierarchical clustering algorithm |
Tree |
Ultrametric tree of hierarchical clustering algorithm |
Object |
Object defined by clustering algorithm as the other output of this algorithm |
Michael Thrun
[Campello et al., 2015] Campello, R. J., Moulavi, D., Zimek, A., & Sander, J.: Hierarchical density estimates for data clustering, visualization, and outlier detection, ACM Transactions on Knowledge Discovery from Data (TKDD), Vol. 10(1), pp. 1-51. 2015.
[Hahsler et al., 2019] Hahsler M, Piekenbrock M, Doran D: dbscan: Fast Density-Based Clustering with R. Journal of Statistical Software, 91(1), pp. 1-30. doi: 10.18637/jss.v091.i01, 2019
data('Hepta')
out=HierarchicalDBSCAN(Hepta$Data,PlotIt=FALSE)
data('Leukemia')
set.seed(1234)
CA=HierarchicalDBSCAN(Leukemia$DistanceMatrix)
#ClusterCount(CA$Cls)
#ClusterDendrogram(CA$Dendrogram,5,main='H-DBscan')
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.