View source: R/ClusterDaviesBouldinIndex.R
ClusterDaviesBouldinIndex | R Documentation |
Internal (i.e. without prior classification) cluster quality measure called Davies Bouldin index for a given clustering published in [Davies/Bouldin, 1979].
ClusterDaviesBouldinIndex(Cls, Data,...)
Cls |
[1:n] numerical vector of numbers defining the classification as the main output of the clustering algorithm for the n cases of data. It has k unique numbers representing the arbitrary labels of the clustering. |
Data |
matrix, [1:d,1:n] dataset of d variables and n cases |
... |
Further arguments passed on to the |
Wrapper for index.DB
. Davies Bouldin index is defined in [Davies/Bouldin, 1979]. Best clustering scheme essentially minimizes the Davies-Bouldin index because it is defined as the function of the ratio of the within cluster scatter, to the between cluster separation.[Davies/Bouldin, 1979].
List of
DaviesBouldinIndex |
scalar,Davies Bouldin index |
Object |
further information stored in |
Michael Thrun
[Davies/Bouldin, 1979] Davies, D. L., & Bouldin, D. W.: A cluster separation measure, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 1(2), pp. 224-227. doi 10.1109/TPAMI.1979.4766909, 1979.
data("Hepta")
Cls=kmeansClustering(Hepta$Data,ClusterNo = 7,Type="Hartigan")$Cls
ClusterDaviesBouldinIndex(Cls,Hepta$Data)[1]
data("Hepta")
ClsWellSeperated=kmeansClustering(Hepta$Data,ClusterNo = 7,Type="Steinley")$Cls
ClusterDaviesBouldinIndex(ClsWellSeperated,Hepta$Data)[1]
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.