ClusterChallenge: Generates a Fundamental Clustering Challenge based on...

View source: R/ClusterChallenge.R

ClusterChallengeR Documentation

Generates a Fundamental Clustering Challenge based on specific artificial datasets.

Description

Lsun3D and FCPS datasets were introduced in various publications for a specific fixed size. This function generalizes them for any sample size.

Usage

ClusterChallenge(Name,SampleSize,

PlotIt=FALSE,PointSize=1,Plotter3D="rgl",...)

Arguments

Name

string, either 'Atom', 'Chainlink, 'EngyTime', 'GolfBall', 'Hepta', 'Lsun3D', 'Target' 'Tetra' 'TwoDiamonds' 'WingNut

SampleSize

Size of Sample higher than 300, preferable above 500

PlotIt

TRUE: Plots the challenge with ClusterPlotMDS

PointSize

If PlotIt=TRUE: see ClusterPlotMDS

Plotter3D

If PlotIt=TRUE: see ClusterPlotMDS

...

If PlotIt=TRUE: further arguments for ClusterPlotMDS

Details

A detailed description of the datasets can be found in [Thrun/Ultsch 2020]. Sampling works by combining Pareto Density Estimation with rejection sampling.

Value

LIST, with

Name

[1:SampleSize,1:d] data matrix

Cls

[1:SampleSize] numerical vector of classification

Author(s)

Michael Thrun

References

[Thrun/Ultsch, 2020] Thrun, M. C., & Ultsch, A.: Clustering Benchmark Datasets Exploiting the Fundamental Clustering Problems, Data in Brief, Vol. in press, pp. 105501, \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1016/j.dib.2020.105501")}, 2020.

See Also

ClusterPlotMDS

Examples


## Not run: 
ClusterChallenge("Chainlink",2000,PlotIt=TRUE)

## End(Not run)

FCPS documentation built on Oct. 19, 2023, 5:06 p.m.