View source: R/ClusterDunnIndex.R
ClusterDunnIndex | R Documentation |
Internal (i.e. without prior classification) cluster quality measure called Dunn index for a given clustering published in [Dunn, 1974].
ClusterDunnIndex(Cls,DataOrDistances,
DistanceMethod="euclidean",Silent=TRUE,Force=FALSE,...)
Cls |
[1:n] numerical vector of numbers defining the classification as the main output of the clustering algorithm for the n cases of data. It has k unique numbers representing the arbitrary labels of the clustering. |
DataOrDistances |
matrix, DataOrDistance[1:n,1:n] symmetric matrix of dissimilarities, if variable unsymmetric DataOrDistance[1:d,1:n] is assumed as a dataset and the euclidean distances are calculated of d variables and n cases |
DistanceMethod |
Optional, one of 39 distance methods of |
Silent |
TRUE: Warnings are shown |
Force |
TRUE: force computing in case of numerical instability |
... |
Further arguments passed on to the |
Dunn index is defined as Dunn=min(InterDist)/max(IntraDist)
. Well seperated clusters have usually a dunn index above 1, for details please see [Dunn, 1974].
List of
Dunn |
scalar, Dunn Index |
IntraDist |
[1:k] numerical vector of minimal intra cluster distances per given cluster |
InterDist |
[1:k] numerical vector of minimal inter cluster distances per given cluster |
Michael Thrun
[Dunn, 1974] Dunn, J. C.: Well_separated clusters and optimal fuzzy partitions, Journal of cybernetics, Vol. 4(1), pp. 95-104. 1974.
data("Hepta")
Cls=kmeansClustering(Hepta$Data,ClusterNo = 7,Type="Hartigan")$Cls
ClusterDunnIndex(Cls,Hepta$Data)
data("Hepta")
ClsWellSeperated=kmeansClustering(Hepta$Data,ClusterNo = 7,Type="Steinley")$Cls
ClusterDunnIndex(ClsWellSeperated,Hepta$Data)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.