View source: R/HierarchicalClusterDists.R
HierarchicalClusterDists | R Documentation |
Please use HierarchicalClustering
. Cluster analysis on a set of dissimilarities and methods for analyzing it. Uses stats package function 'hclust'.
HierarchicalClusterDists(pDist,ClusterNo=0,Type="ward.D2",
ColorTreshold=0,Fast=FALSE,...)
pDist |
Distances as either matrix [1:n,1:n] or dist object |
ClusterNo |
A number k which defines k different clusters to be built by the algorithm. |
Type |
Method of cluster analysis: "ward.D", "ward.D2", "single", "complete", "average", "mcquitty", "median" or "centroid". |
ColorTreshold |
Draws cutline w.r.t. dendogram y-axis (height), height of line as scalar should be given |
Fast |
If TRUE and fastcluster installed, then a faster implementation of the methods above can be used |
... |
In case of plotting further argument for |
List of
Cls |
If, ClusterNo>0: [1:n] numerical vector with n numbers defining the classification as the main output of the clustering algorithm. It has k unique numbers representing the arbitrary labels of the clustering. Otherwise for ClusterNo=0: NULL |
Dendrogram |
Dendrogram of hierarchical clustering algorithm |
Object |
Ultrametric tree of hierarchical clustering algorithm |
Michael Thrun
HierarchicalClusterData
HierarchicalClusterDists
HierarchicalClustering
data('Hepta')
#out=HierarchicalClusterDists(as.matrix(dist(Hepta$Data)),ClusterNo=7)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.