R/plot.HCPC.R

Defines functions plot.HCPC

Documented in plot.HCPC

##################################################################################################################
plot.HCPC <- function(x, axes=c(1,2), choice="3D.map", rect=TRUE, draw.tree=TRUE,
  ind.names=TRUE, t.level="all", title=NULL,
  new.plot=FALSE, max.plot=15,tree.barplot=TRUE,
  centers.plot=FALSE,...){
  
######## sub-function #############################################################################################
  f.draw.tree <- function(X, merge, height, dimens, t.level,
    ind.names, axes, xlim=NULL, vec=NULL, scale.y=NULL, xlab=NULL,
    ylab=NULL, y.ticklabs=NULL,...){
    ax1 <- axes[1]
    ax2 <- axes[2]
    names.ind <- row.names(X)
    X$clust <- as.numeric(X$clust)
    nb.clust <- max(X$clust)
#    if(class(t.level)=="character"){
    if(inherits(t.level,"character")){
      if(t.level=="centers") t.level <- nb.clust
      if(t.level=="all") t.level <- nrow(merge)+1
    }
    leg <- NULL

    if (dimens==2){main <- NULL}
    if (dimens==3){
      if((new.plot)&!nzchar(Sys.getenv("RSTUDIO_USER_IDENTITY"))) dev.new()
      if(vec) {
	    X[,ax1] <- res$data.clust[,1]
        x <- X[,ax1]
        X[,ax2] <- seq(min(x)/1000, max(x)/1000, length.out=length(x))
	  } else{ 
         if(ncol(X)==2) {
           X <- X[,c(1,1,2)]
           x <- X[,1]
           X[,2] <- seq(min(x)/1000, max(x)/1000, length.out=length(x))
	     } else x <- X[,ax1]
	  }
      y <- X[,ax2]
      z <- rep(0,nrow(X))
      X$clust <- as.factor(X$clust)
      levs <- levels(X$clust)
      if(!vec){
        if(is.null(xlab)) xlab <- paste("Dim ", ax1, " (", round(res$call$t$res$eig[ax1,2], digits=2), "%)", sep="")
        if(is.null(ylab)) ylab <- paste("Dim ", ax2, " (", round(res$call$t$res$eig[ax2,2], digits=2), "%)", sep="")
      }
      else{
        y.ticklabs <- rep(" ",2)
        ylab <- " "
        xlab <- " "
      }
      scale.y <- ((max(y)-min(y))/(max(x)-min(x)))
      s <- scatterplot3d::scatterplot3d(x, y, z, zlim=c(0,max(height)),
        xlab=xlab, ylab=ylab, zlab="height", box=FALSE,
        color=X$clust, pch=20,
        scale.y=scale.y, y.ticklabs=y.ticklabs,...)
      for(i in 1:nb.clust) leg <- c(leg, paste("cluster",levs[i]," ", sep=" "))
      legend("topleft", leg, text.col=as.numeric(levels(X$clust)),cex=0.8)
      
      if(ind.names){
        for(i in 1:nrow(X)) text(s$xyz.convert(x[i],y[i],0),cex=0.7, names.ind[i], col=as.vector(X$clust)[i], pos=1)
      }
    }
    
    aa <- matrix(ncol=4, nrow=nrow(merge))
    for(i in 1:nrow(merge)){
      if(merge[i,1]<0){
        x1 <- X[-merge[i,1],ax1]
        y1 <- X[-merge[i,1],ax2]
        h1 <- 0
        w1 <- 1
      } else{
        x1 <- aa[merge[i,1],1]
        y1 <- aa[merge[i,1],2]
        w1 <- aa[merge[i,1],4]
        h1 <- aa[merge[i,1],3]
      }
      if(merge[i,2]<0){
        x2 <- X[-merge[i,2],ax1]
        y2 <- X[-merge[i,2],ax2]
        h2 <- 0
        w2 <- 1
      } else{
        x2 <- aa[merge[i,2],1]
        y2 <- aa[merge[i,2],2]
        w2 <- aa[merge[i,2],4]
        h2 <- aa[merge[i,2],3]
      }
      aa[i,1] <- (w1*x1+w2*x2)/(w1+w2)
      aa[i,2] <- (w1*y1+w2*y2)/(w1+w2)
      if(i<=nrow(merge)-t.level+1) height[i] <- 0
      aa[i,3] <- height[i]
      aa[i,4] <- w1+w2
      
      if(i>(nrow(merge)-t.level+1)){
        if(dimens==3) s$points3d(rbind(c(x1,y1,h1),c(x1,y1,height[i]), c(x2,y2,height[i]),c(x2,y2,h2)), lty=1, type="o", pch="")
        if(dimens==2) lines(c(x1,x2), c(y1,y2), lwd=(height[i]/max(height))*3)
      }
    }
    if(dimens==3){
      list.centers <- by(X[,-ncol(X),drop=FALSE], X$clust, colMeans)
      centers <- matrix(unlist(list.centers), ncol=ncol(X)-1, byrow=TRUE)
      for(l in 1:nb.clust){
        if(centers.plot){
          s$points3d(centers[l,ax1], centers[l, ax2], 0,col=levs[l], type="o", pch=".", cex=10)
          text(s$xyz.convert(centers[l,ax1],centers[l,ax2],0), cex=0.8, leg[l], col=levs[l], pos=1)
        }
      } 
    }
  }
  
  
#########################################################################################################
  
######## Main program
  res <- x
  X <- res$call$X
  max <- res$call$max
  min <- res$call$min
  max.plot <- max(res$call$max,max.plot)
  nb.clust <- length(levels(X$clust))
  levs <- levels(X$clust)
  if(choice=="tree"){
    if((new.plot)&!nzchar(Sys.getenv("RSTUDIO_USER_IDENTITY"))) dev.new()
    if(is.null(title)) title <- "Hierarchical clustering"
    if(tree.barplot){
      def.par <- par(no.readonly = TRUE)
      par(mar=c(0.5,2,0.75,0))
      lay <- matrix(ncol=5,nrow=5,c(2,4,4,4,4,2,4,4,4,4,2,4,4,4,4,2,4,4,4,4,1,3,3,3,3))
      layout(lay,respect=TRUE)
#      layout.show(n=4)
      vec <- res$call$t$inert.gain[1:min(max.plot,length(res$call$t$inert.gain))]
	  if (vec[length(vec)] > vec[length(vec)-1]) vec <- vec[-length(vec)] ## suppress the last value if kk is used 
      barplot(height=vec, col=c(rep("black", nb.clust-1), rep("grey", max.plot-nb.clust+1)), space=0.9)
      plot(x=1,xlab="",ylab="",main="",col="white",axes=FALSE)
      text(1,1,title,cex=2)
      plot(x=1,xlab="",ylab="",main="",col="white",axes=FALSE)
      legend("top","inertia gain  ",box.lty=NULL, cex=1)
    }
    plot(res$call$t$tree, hang=-1, xlab="", sub="",...)
    
    if(rect){
      y <- (res$call$t$tree$height[length(res$call$t$tree$height)-nb.clust+2]+res$call$t$tree$height[length(res$call$t$tree$height)-nb.clust+1])/2
			ordColo <- unique(res$call$X$clust[res$call$t$tree$order])
			rect <- rect.hclust(res$call$t$tree, h = y, border = ordColo)
    }
  }
  
  if(choice=="3D.map"){
    if (is.null(title)) title <- "Hierarchical clustering on the factor map" 
    f.draw.tree(t.level=t.level, X, merge=res$call$t$tree$merge, height=res$call$t$tree$height, dimens=3, ind.names=ind.names, axes=axes, vec=res$call$vec,...)
    title(title)
  }
  
  if(choice=="bar"){
    if((new.plot)&!nzchar(Sys.getenv("RSTUDIO_USER_IDENTITY"))) dev.new()
    vec <- res$call$t$inert.gain[1:max.plot]
    names.arg <- NULL
    if(is.null(title)) title <- "Inter-cluster inertia gains"
    for(i in 1:(max.plot)) names.arg <- c(names.arg, paste(i, "-", i+1, sep=""))
    barplot(vec, names.arg=names.arg, col=c(rep(1,nb.clust-1),rep(18,length(vec)-nb.clust+1)), main=title, xlab="level of cutting", ylab="Inertia")
  }
  
  if(choice=="map"){
    if(!res$call$vec){
      if (is.null(title)) title <- "Factor map"
      Y <- X[,-ncol(X)]
      leg.map <- NULL
      for(p in 1:nrow(X)) leg.map[p] <- paste("cluster", X$clust[p], " ", sep=" ")
      Y <- cbind.data.frame(Y, as.factor(leg.map))
#      res2=PCA(Y, quali.sup=ncol(Y), scale.unit=FALSE, ncp=Inf, graph=FALSE)
#      res2$eig=res$call$t$res$eig

      res2 <- PCA(Y, quali.sup = ncol(Y), scale.unit = FALSE, row.w = res$call$t$res$call$row.w ,ncp = Inf, graph = FALSE)
      res2$eig <- res$call$t$res$eig
	  inv <- NULL
	  if (centers.plot==FALSE) inv <- "quali"
      if(ind.names) plot.PCA(res2, title=title, habillage=ncol(Y),cex=0.8, invisible=inv, axes=axes,new.plot=new.plot,palette=palette(),graph.type="classic",...)
      else plot.PCA(res2, title=title, habillage=ncol(Y), cex=0.8, axes=axes, label="none", invisible=inv,new.plot=new.plot,palette=palette(),graph.type="classic",...)
      if(draw.tree) f.draw.tree(X, merge=res$call$t$tree$merge, height=res$call$t$tree$height, dimens=2, t.level=t.level, axes=axes,...)
    }
  }
  if(choice=="tree" & tree.barplot) par(def.par)
  invisible()
}

Try the FactoMineR package in your browser

Any scripts or data that you put into this service are public.

FactoMineR documentation built on May 29, 2024, 3:36 a.m.