Nothing
#' Predictions computation
#'
#' @param newdata data frame : collected data for a new individual
#' @param object lsjm object : estimation of the model
#' @param s numeric : the time to begin prediction
#' @param window numeric : the side of the prediction window
#' @param event integer (0, 1 or 2) : the event of interest for the prediction
#'
#'
pred_s.t.ponctuel.tps <- function(newdata,object, s, window, event = 1){
newdata <- as.data.frame(newdata)
table.predyn.ponct <- c()
#Ncpus <- 40
#cl <- parallel::makeCluster(Ncpus)
#doParallel::registerDoParallel(cl)
#id.pred.to <- unique(newdata[,all.vars(object$control$formGroup)])
#res.pred <- foreach(id.pred.new=1:length(id.pred.to ), .combine='c', .packages = c("survival")) %dopar% {
#print(id.pred.new)
#########
#.packages plus tard
##################################################################
for(id.pred.new in unique(newdata[,all.vars(object$control$formGroup)])){
#print(id.pred.new)
newdata.id <- subset(newdata, get(all.vars(object$control$formGroup)) == id.pred.new)
newdata.id$id <- id.pred.new
newdata.id <- as.data.frame(newdata.id)
data.long.until.time.s <-subset(newdata.id, get(object$control$timeVar)<=s)
name.time.event <- all.vars(object$control$formSurv)[1]
name.event.event <- all.vars(object$control$formSurv)[2]
data.long.until.time.s[which(data.long.until.time.s[,name.time.event]>=s),name.event.event] <- 0
data.long.until.time.s[which(data.long.until.time.s[,name.time.event]>=s),name.time.event] <- max(data.long.until.time.s[,object$control$timeVar])
data.long.until.time.s.id <- data.long.until.time.s[1,]
################
###Parameters###
################
param <- object$table.res$Estimation
#Manage parameters
curseur <- 1
#Evenement 1 :
## Risque de base :
if(object$control$hazard_baseline == "Weibull"){
#if(scaleWeibull == "square"){
# alpha_weib <- param[curseur]**2
# curseur <- curseur + 1
# shape <- param[curseur]**2
# curseur <- curseur + 1
#}
#else{
# alpha_weib <- exp(param[curseur])
# curseur <- curseur + 1
# shape <- exp(param[curseur])
# curseur <- curseur + 1
#}
shape <- param[curseur]**2
curseur <- curseur + 1
}
if(object$control$hazard_baseline == "Splines"){
gamma <- param[(curseur):(curseur+object$control$ord.splines+1)]
curseur <- curseur + object$control$ord.splines + 2
}
## Covariables :
if(object$control$nb.alpha >=1){
alpha <- param[(curseur):(curseur+object$control$nb.alpha-1)]
curseur <- curseur+object$control$nb.alpha
}
## Association :
if("current value" %in% object$control$sharedtype){
alpha.current <- param[curseur]
curseur <- curseur + 1
}
else{
alpha.current <- 0
}
if("slope" %in% object$control$sharedtype){
alpha.slope <- param[curseur]
curseur <- curseur + 1
}
else{
alpha.slope <- 0
}
if("variability" %in% object$control$sharedtype){
alpha.sigma <- param[curseur]
curseur <- curseur + 1
}
else{
alpha.sigma <- 0
}
#if(sharedtype %in% c("RE")){
# stop("Not implemented yet")
#}
#if(sharedtype %in% c("CV","CVS")){
# alpha.current <- param[curseur]
# curseur <- curseur + 1
#}
#if(sharedtype %in% c("CVS","S")){
# alpha.slope <- param[curseur]
# curseur <- curseur + 1
#}
#if(variability_hetero){
# alpha.sigma <- param[curseur]
# curseur <- curseur + 1
#}
# Evenement 2
if(object$control$competing_risk){
## Risque de base :
if(object$control$hazard_baseline_CR == "Weibull"){
#if(scaleWeibull == "square"){
# alpha_weib.CR <- param[curseur]**2
# curseur <- curseur + 1
# shape.CR <- param[curseur]**2
# curseur <- curseur + 1
#}
#else{
# alpha_weib.CR <- exp(param[curseur])
# curseur <- curseur + 1
# shape.CR <- exp(param[curseur])
# curseur <- curseur + 1
#}
shape.CR <- param[curseur]**2
curseur <- curseur + 1
}
if(object$control$hazard_baseline_CR == "Splines"){
gamma.CR <- param[(curseur):(curseur+object$control$ord.splines+1)]
curseur <- curseur + object$control$ord.splines + 2
}
## Covariables :
if(object$control$nb.alpha.CR >=1){
alpha.CR <- param[(curseur):(curseur+object$control$nb.alpha.CR-1)]
curseur <- curseur+object$control$nb.alpha.CR
}
## Association :
if("current value" %in% object$control$sharedtype_CR){
alpha.current.CR <- param[curseur]
curseur <- curseur + 1
}
else{
alpha.current.CR <- 0
}
if("slope" %in% object$control$sharedtype_CR){
alpha.slope.CR <- param[curseur]
curseur <- curseur + 1
}
else{
alpha.slope <- 0
}
if("variability" %in% object$control$sharedtype_CR){
alpha.sigma.CR <- param[curseur]
curseur <- curseur + 1
}
else{
alpha.sigma.CR <- 0
}
#if(sharedtype_CR %in% c("RE")){
# stop("Not implemented yet")
#}
#if(sharedtype_CR %in% c("CV","CVS")){
# alpha.current.CR <- param[curseur]
# curseur <- curseur + 1
#}
#if(sharedtype_CR %in% c("CVS","S")){
# alpha.slope.CR <- param[curseur]
# curseur <- curseur + 1
#}
#if(variability_hetero){
# alpha.sigma.CR <- param[curseur]
# curseur <- curseur + 1
#}
}
# Marqueur :
## Effets fixes trend :
beta <- param[curseur:(curseur+object$control$nb.priorMean.beta-1)]
if( "slope" %in% object$control$sharedtype || "slope" %in% object$control$sharedtype_CR){
beta_slope <- beta[object$control$indices_beta_slope]
}
curseur <- curseur+object$control$nb.priorMean.beta
## Effets fixes var :
if(object$control$variability_hetero){
omega <- param[curseur:(curseur+object$control$nb.omega-1)]
curseur <- curseur + object$control$nb.omega
}
else{
sigma.epsilon <- param[curseur]
curseur <- curseur + 1
}
## Matrice de variance-covariance de l'ensemble des effets aléatoires :
if(object$control$variability_hetero){
if(object$control$correlated_re){
borne1 <- curseur + choose(n = object$control$nb.e.a, k = 2) + object$control$nb.e.a - 1
C1 <- matrix(rep(0,(object$control$nb.e.a)**2),nrow=object$control$nb.e.a,ncol=object$control$nb.e.a)
C1[lower.tri(C1, diag=T)] <- param[curseur:borne1]
C2 <- matrix(param[(borne1+1):(borne1+object$control$nb.e.a.sigma*object$control$nb.e.a)],nrow=object$control$nb.e.a.sigma,ncol=object$control$nb.e.a, byrow = TRUE)
borne2 <- borne1+object$control$nb.e.a.sigma*object$control$nb.e.a + 1
borne3 <- borne2 + choose(n = object$control$nb.e.a.sigma, k = 2) + object$control$nb.e.a.sigma - 1
C3 <- matrix(rep(0,(object$control$nb.e.a.sigma)**2),nrow=object$control$nb.e.a.sigma,ncol=object$control$nb.e.a.sigma)
C3[lower.tri(C3, diag=T)] <- param[borne2:borne3]
C4 <- matrix(rep(0,object$control$nb.e.a*object$control$nb.e.a.sigma),nrow=object$control$nb.e.a,ncol=object$control$nb.e.a.sigma)
MatCov <- rbind(cbind(C1,C4),cbind(C2,C3))
MatCov <- as.matrix(MatCov)
}
else{
borne1 <- curseur + choose(n = object$control$nb.e.a, k = 2) + object$control$nb.e.a - 1
C1 <- matrix(rep(0,(object$control$nb.e.a)**2),nrow=object$control$nb.e.a,ncol=object$control$nb.e.a)
C1[lower.tri(C1, diag=T)] <- param[curseur:borne1]
borne3 <- borne1 + choose(n = object$control$nb.e.a.sigma, k = 2) + object$control$nb.e.a.sigma
C3 <- matrix(rep(0,(object$control$nb.e.a.sigma)**2),nrow=object$control$nb.e.a.sigma,ncol=object$control$nb.e.a.sigma)
C3[lower.tri(C3, diag=T)] <- param[(borne1+1):borne3]
C4 <- matrix(rep(0,object$control$nb.e.a*object$control$nb.e.a.sigma),nrow=object$control$nb.e.a,ncol=object$control$nb.e.a.sigma)
C2.bis <- matrix(rep(0,object$control$nb.e.a*object$control$nb.e.a.sigma),nrow=object$control$nb.e.a.sigma,ncol=object$control$nb.e.a)
MatCov <- rbind(cbind(C1,C4),cbind(C2.bis,C3))
MatCov <- as.matrix(MatCov)
}
}
else{
borne1 <- curseur + choose(n = object$control$nb.e.a, k = 2) + object$control$nb.e.a - 1
C1 <- matrix(rep(0,(object$control$nb.e.a)**2),nrow=object$control$nb.e.a,ncol=object$control$nb.e.a)
C1[lower.tri(C1, diag=T)] <- param[curseur:borne1]
MatCov <- C1
}
if(object$control$variability_hetero){
Zq <- randtoolbox::sobol(object$control$S2, object$control$nb.e.a+object$control$nb.e.a.sigma, normal = TRUE, scrambling = 1)
}else{
Zq <- randtoolbox::sobol(object$control$S2, object$control$nb.e.a, normal = TRUE, scrambling = 1)
}
random.effects <- Zq%*%t(MatCov)
b_al <- random.effects[,1:object$control$nb.e.a]
if(object$control$variability_hetero){
b_om <- random.effects[,(object$control$nb.e.a+1):(object$control$nb.e.a+object$control$nb.e.a.sigma)]
}
#####################
# Longitudinal part #
#####################
list.long <- data.manag.long(object$control$formGroup,object$control$formFixed, object$control$formRandom,data.long.until.time.s)
X_base <- list.long$X
U <- list.long$U
y.new.prog <- list.long$y.new.prog
if(object$control$variability_hetero){
list.var <- data.manag.sigma(object$control$formGroup,object$control$formFixedVar, object$control$formRandomVar,data.long.until.time.s)
O_base <- list.var$X
W_base <- list.var$U
}
if(is.null(nrow(X_base))){
if(object$control$variability_hetero){
sigma.long <- exp((omega%*%O_base)[1,1] + b_om%*%W_base)
}
else{
sigma.long <- sigma.epsilon
}
CV <- (beta%*%X_base)[1,1] + b_al%*%U
f_Y_b_sigma <- dnorm(x=y.new.prog, mean = CV, sd = sigma.long)
}else{
f_Y_b_sigma <- rep(1,object$control$S2)
for(k in 1:nrow(X_base)){
if(object$control$variability_hetero){
sigma.long <- exp((omega%*%O_base[k,])[1,1] + b_om%*%W_base[k,])
}
else{
sigma.long <- sigma.epsilon
}
CV <- (beta%*%X_base[k,])[1,1] + b_al%*%U[k,]
f_Y_b_sigma <- f_Y_b_sigma*dnorm(x = y.new.prog[k], mean = CV, sd = sigma.long)
}
}
# Survival data
### Between s and s+t
data.GaussKronrod.1 <- data.GaussKronrod2(data.long.until.time.s.id,a=s,b=s+window,k = object$control$nb_pointsGK)
P.1 <- data.GaussKronrod.1$P
st.1 <- data.GaussKronrod.1$st
wk.1 <- data.GaussKronrod.1$wk
data.id.1 <- data.GaussKronrod.1$data.id2
##########Computing little lambda############
### Matrix for current value and slope
if((c("variability") %in% object$control$sharedtype )|| (c("variability") %in% object$control$sharedtype_CR )){
list.data.GK.current.sigma <- data.time(data.id.1, c(t(st.1)),
object$control$formFixedVar, object$control$formRandomVar,object$control$timeVar)
Os <- list.data.GK.current.sigma$Xtime
Ws <- list.data.GK.current.sigma$Utime
Sigma.current.GK <- exp(matrix(rep(omega%*%t(Os),object$control$S2),nrow=object$control$S2,byrow = T) + b_om%*%t(Ws))
}
if((c("current value") %in% object$control$sharedtype )|| (c("current value") %in% object$control$sharedtype_CR )){
list.data.GK.current <- data.time(data.id.1, c(t(st.1)),
object$control$formFixed, object$control$formRandom,object$control$timeVar)
Xs <- list.data.GK.current$Xtime
Us <- list.data.GK.current$Utime
current.GK <- matrix(rep(beta%*%t(Xs),object$control$S2),nrow=object$control$S2,byrow = T) + b_al%*%t(Us)
}
if((c("slope") %in% object$control$sharedtype )|| (c("slope") %in% object$control$sharedtype_CR )){
list.data.GK.slope <- data.time(data.id.1, c(t(st.1)),
object$control$formSlopeFixed, object$control$formSlopeRandom,object$control$timeVar)
Xs.slope <- list.data.GK.slope$Xtime
Us.slope <- list.data.GK.slope$Utime
slope.GK <- matrix(rep(beta[object$control$indices_beta_slope]%*%t(Xs.slope),object$control$S2),nrow=object$control$S2,byrow = T) + b_al[,-1]%*%t(Us.slope)
}
#### lambda0
if(object$control$hazard_baseline == "Exponential"){
mfZ <- model.frame(object$control$formSurv, data = data.long.until.time.s.id)
Z <- model.matrix(object$control$formSurv, mfZ)
}else{
if(object$control$hazard_baseline == "Weibull"){
mfZ <- model.frame(object$control$formSurv, data = data.long.until.time.s.id)
Z <- model.matrix(object$control$formSurv, mfZ)
}else{
if(object$control$hazard_baseline == "Splines"){
mfZ <- model.frame(object$control$formSurv, data = data.long.until.time.s.id)
Z <- model.matrix(object$control$formSurv, mfZ)
Z <- Z[,-1]
Bs <- splines::splineDesign(object$control$knots.hazard_baseline.splines, c(t(st.1)), ord = 4L)
# if(object$control$left_trunc){
# Bs.0 <- splines::splineDesign(rr, c(t(st.0)), ord = 4L)
# }
}else{
stop("This type of base survival function is not implemented.")
}
}
}
### Same for competing risk
if(object$control$competing_risk){
if(object$control$hazard_baseline_CR == "Exponential"){
mfZ.CR <- model.frame(object$control$formSurv_CR, data = data.long.until.time.s.id)
Z_CR <- model.matrix(object$control$formSurv_CR, mfZ.CR)
}else{
if(object$control$hazard_baseline_CR == "Weibull"){
mfZ.CR <- model.frame(object$control$formSurv_CR, data = data.long.until.time.s.id)
Z_CR <- model.matrix(object$control$formSurv_CR, mfZ.CR)
}else{
if(object$control$hazard_baseline_CR == "Splines"){
mfZ.CR <- model.frame(object$control$formSurv_CR, data = data.long.until.time.s.id)
Z_CR <- model.matrix(object$control$formSurv_CR, mfZ.CR)
Z_CR <- Z_CR[,-1]
Bs.CR <- splines::splineDesign(object$control$knots.hazard_baseline.splines.CR, c(t(st.1)), ord = 4L)
# if(object$control$left_trunc){
# Bs.0.CR <- splines::splineDesign(rr, c(t(st.0)), ord = 4L)
# }
}else{
stop("This type of base survival function is not implemented.")
}
}
}
}
h <- 1
etaBaseline <- 0
survLong <- 0
etaBaseline.0 <- 0
survLong.0 <- 0
if(event==1){
if(c("variability") %in% object$control$sharedtype){
h <- h*exp(alpha.sigma*Sigma.current.GK)
}
if(c("current value") %in% object$control$sharedtype){
h <- h*exp(alpha.current*current.GK)
}
if(c("slope") %in% object$control$sharedtype){
h <- h*exp(alpha.slope*slope.GK)
}
###h0
if(object$control$hazard_baseline == "Exponential"){
h_0.GK <- wk.1
}
if(object$control$hazard_baseline == "Weibull"){
h_0.GK <- shape*(st.1**(shape-1))*wk.1
}
if(object$control$hazard_baseline == "Splines"){
mat_h0s <- matrix(gamma,ncol=1)
h_0.GK <- (wk.1*exp(Bs%*%mat_h0s))
}
###hazard function
if(length(Z)==0){
pred_surv <- 0
}else{
pred_surv <- (alpha%*%Z)[1,1]
}
}else{
if(c("variability") %in% object$control$sharedtype_CR){
h <- h*exp(alpha.sigma.CR*Sigma.current.GK)
}
if(c("current value") %in% object$control$sharedtype_CR ){
h <- h*exp(alpha.current.CR*current.GK)
}
if(c("slope") %in% object$control$sharedtype_CR){
h <- h*exp(alpha.slope.CR*slope.GK)
}
###h0
if(object$control$hazard_baseline_CR == "Exponential"){
h_0.GK <- wk.1
}
if(object$control$hazard_baseline_CR == "Weibull"){
h_0.GK <- shape.CR*(st.1**(shape.CR-1))*wk.1
}
if(object$control$hazard_baseline_CR == "Splines"){
mat_h0s <- matrix(gamma.CR,ncol=1)
h_0.GK <- (wk.1*exp(Bs.CR%*%mat_h0s))
}
###hazard function
if(length(Z_CR)==0){
pred_surv <- 0
}else{
pred_surv <- (alpha.CR%*%Z_CR)[1,1]
}
}
h <- h*exp(pred_surv)
h <- matrix(rep(h_0.GK,nrow(h)),nrow = nrow(h),byrow = T)*h
Gamma1 <- c()
Gamma2 <- c()
for(t2 in st.1){
data.GaussKronrod.2 <- data.GaussKronrod(data.long.until.time.s.id,t2,k = object$control$nb_pointsGK)
P.2 <- data.GaussKronrod.2$P
st.2 <- data.GaussKronrod.2$st
wk.2 <- data.GaussKronrod.2$wk
data.id.2 <- data.GaussKronrod.2$data.id2
if(c("variability") %in% object$control$sharedtype){
list.data.GK.current.2 <- data.time(data.id.2, c(t(st.2)),
object$control$formFixedVar, object$control$formRandomVar,object$control$timeVar)
Os.2 <- list.data.GK.current.2$Xtime
Ws.2 <- list.data.GK.current.2$Utime
}
if(c("current value") %in% object$control$sharedtype){
list.data.GK.current.2 <- data.time(data.id.2, c(t(st.2)),
object$control$formFixed, object$control$formRandom,object$control$timeVar)
Xs.2 <- list.data.GK.current.2$Xtime
Us.2 <- list.data.GK.current.2$Utime
}
if(c("slope") %in% object$control$sharedtype){
list.data.GK.slope.2 <- data.time(data.id.2, c(t(st.2)),
object$control$formSlopeFixed, object$control$formSlopeRandom,object$control$timeVar)
Xs.slope.2 <- list.data.GK.slope.2$Xtime
Us.slope.2 <- list.data.GK.slope.2$Utime
}
#### lambda0
if(object$control$hazard_baseline == "Exponential"){
mfZ <- model.frame(object$control$formSurv, data = data.long.until.time.s.id)
Z <- model.matrix(object$control$formSurv, mfZ)
}else{
if(object$control$hazard_baseline == "Weibull"){
mfZ <- model.frame(object$control$formSurv, data = data.long.until.time.s.id)
Z <- model.matrix(object$control$formSurv, mfZ)
}else{
if(object$control$hazard_baseline == "Splines"){
mfZ <- model.frame(object$control$formSurv, data = data.long.until.time.s.id)
Z <- model.matrix(object$control$formSurv, mfZ)
Z <- Z[,-1]
Bs.2 <- splines::splineDesign(object$control$knots.hazard_baseline.splines, c(t(st.2)), ord = 4L)
#if(object$control$left_trunc){
# Bs.0 <- splines::splineDesign(rr, c(t(st.0)), ord = 4L)
#}
}else{
stop("This type of base survival function is not implemented.")
}
}
}
####Same for competing risks
if(object$control$competing_risk){
if(c("variability") %in% object$control$sharedtype_CR){
list.data.GK.current.2 <- data.time(data.id.2, c(t(st.2)),
object$control$formFixedVar, object$control$formRandomVar,object$control$timeVar)
Os.2 <- list.data.GK.current.2$Xtime
Ws.2 <- list.data.GK.current.2$Utime
}
if(c("current value") %in% object$control$sharedtype_CR){
list.data.GK.current.2 <- data.time(data.id.2, c(t(st.2)),
object$control$formFixed, object$control$formRandom,object$control$timeVar)
Xs.2 <- list.data.GK.current.2$Xtime
Us.2 <- list.data.GK.current.2$Utime
}
if(c("slope") %in% object$control$sharedtype_CR){
list.data.GK.slope.2 <- data.time(data.id.2, c(t(st.2)),
object$control$formSlopeFixed, object$control$formSlopeRandom,object$control$timeVar)
Xs.slope.2 <- list.data.GK.slope.2$Xtime
Us.slope.2 <- list.data.GK.slope.2$Utime
}
if(object$control$hazard_baseline_CR == "Exponential"){
mfZ.CR <- model.frame(object$control$formSurv_CR, data = data.long.until.time.s.id)
Z_CR <- model.matrix(object$control$formSurv_CR, mfZ.CR)
}else{
if(object$control$hazard_baseline_CR == "Weibull"){
mfZ.CR <- model.frame(object$control$formSurv_CR, data = data.long.until.time.s.id)
Z_CR <- model.matrix(object$control$formSurv_CR, mfZ.CR)
}else{
if(object$control$hazard_baseline_CR == "Splines"){
mfZ.CR <- model.frame(object$control$formSurv_CR, data = data.long.until.time.s.id)
Z_CR <- model.matrix(object$control$formSurv_CR, mfZ.CR)
Z_CR <- Z_CR[,-1]
Bs.CR.2 <- splines::splineDesign(object$control$knots.hazard_baseline.splines.CR, c(t(st.2)), ord = 4L)
# if(object$control$left_trunc){
# Bs.0.CR <- splines::splineDesign(rr, c(t(st.0)), ord = 4L)
# }
}else{
stop("This type of base survival function is not implemented.")
}
}
}
}
h.2.1 <- 1
h.2.2 <- 1
if(c("variability") %in% object$control$sharedtype){
sigma.GK.2 <- exp(matrix(rep(omega%*%t(Os.2),object$control$S2),nrow=object$control$S2,byrow = T)+ b_om%*%t(Ws.2))
h.2.1 <- h.2.1*exp(alpha.sigma*sigma.GK.2)
if(object$control$competing_risk && (c("variability") %in% object$control$sharedtype_CR)){
h.2.2 <- h.2.2*exp(alpha.sigma.CR*sigma.GK.2)
}
}
if((c("current value") %in% object$control$sharedtype)|| (c("current value") %in% object$control$sharedtype_CR)){
current.GK.2 <- matrix(rep(beta%*%t(Xs.2),object$control$S2),nrow=object$control$S2,byrow = T)+ b_al%*%t(Us.2)
if((c("current value") %in% object$control$sharedtype)){
h.2.1 <- h.2.1*exp(alpha.current*current.GK.2)
#h.2.1 <- matrix(rep(h.2.1,ncol(current.GK.2)),ncol=ncol(current.GK.2))*exp(alpha.current*current.GK.2)
}
if((object$control$competing_risk && (c("current value") %in% object$control$sharedtype_CR))){
h.2.2 <- h.2.2*exp(alpha.current.CR*current.GK.2)
#h.2.2 <- matrix(rep(h.2.2,ncol(current.GK.2)),ncol=ncol(current.GK.2))*exp(alpha.current.CR*current.GK.2)
}
}
if((c("slope") %in% object$control$sharedtype)||(c("slope") %in% object$control$sharedtype_CR)){
#current.GK.2 <- matrix(rep(beta%*%t(Xs.2),object$control$S2),nrow=object$control$S2,byrow = T)+ b_al%*%t(Us.2)
slope.GK.2 <- matrix(rep(beta[object$control$indices_beta_slope]%*%t(Xs.slope.2),object$control$S2),nrow=object$control$S2,byrow = T)+ b_al[,-1]%*%t(Us.slope.2)
if((c("slope") %in% object$control$sharedtype)){
#h.2.1 <- h.2.1*exp(alpha.current*current.GK.2)
#h.2.1 <- matrix(rep(h.2.1,ncol(current.GK.2)),ncol=ncol(current.GK.2))*exp(alpha.current*current.GK.2)
h.2.1 <- h.2.1*exp(alpha.slope*slope.GK.2)
}
if((object$control$competing_risk && (c("slope") %in% object$control$sharedtype_CR))){
#h.2.2 <- h.2.2*exp(alpha.current.CR*current.GK.2)
#h.2.2 <- matrix(rep(h.2.2,ncol(current.GK.2)),ncol=ncol(current.GK.2))*exp(alpha.current.CR*current.GK.2)
h.2.2 <- h.2.2*exp(alpha.slope.CR*slope.GK.2)
}
}
###h0
if(object$control$hazard_baseline == "Exponential"){
h_0.GK.2 <- wk.2
}
if(object$control$hazard_baseline == "Weibull"){
h_0.GK.2 <- shape*(st.2**(shape-1))*wk.2
}
if(object$control$hazard_baseline == "Splines"){
mat_h0s <- matrix(gamma,ncol=1)
h_0.GK.2 <- (wk.2*exp(Bs.2%*%mat_h0s))
}
###hazard function
if(length(Z)==0){
pred_surv <- 0
}else{
pred_surv <- (alpha%*%Z)[1,1]
}
h.2.1 <- h.2.1*exp(pred_surv)
h.2.1 <- matrix(rep(h_0.GK.2,nrow(h.2.1)),nrow = nrow(h.2.1),byrow = T)*h.2.1
if(object$control$competing_risk){
if(object$control$hazard_baseline_CR == "Exponential"){
h_0.GK.2.CR <- wk.2
}
if(object$control$hazard_baseline_CR == "Weibull"){
h_0.GK.2.CR <- shape.CR*(st.2**(shape.CR-1))*wk.2
}
if(object$control$hazard_baseline_CR == "Splines"){
mat_h0s <- matrix(gamma.CR,ncol=1)
h_0.GK.2.CR <- (wk.2*exp(Bs.CR.2%*%mat_h0s))
}
###hazard function
if(length(Z_CR)==0){
pred_surv.CR <- 0
}else{
pred_surv.CR <- (alpha.CR%*%Z_CR)[1,1]
}
h.2.2 <- h.2.2*exp(pred_surv.CR)
h.2.2 <- matrix(rep(h_0.GK.2.CR,nrow(h.2.2)),nrow = nrow(h.2.2),byrow = T)*h.2.2
}
Gamma1 <- cbind(Gamma1, (t2/2)*rowSums(h.2.1))
if(object$control$competing_risk){
Gamma2 <- cbind(Gamma2,(t2/2)*rowSums(h.2.2))
}
}
if(object$control$competing_risk){
int <- exp(-Gamma1-Gamma2)*h
}
else{
int <- exp(-Gamma1)*h
}
surv.num <- P.1*rowSums(int)
numerateur <- surv.num*f_Y_b_sigma
numerateur <- mean(numerateur)
###### Denominateur #######
### At s
if((c("random effect") %in% object$control$sharedtype)){
stop("Not implemented yet")
}else{
list.GaussKronrod <- data.GaussKronrod(data.long.until.time.s.id, s, k = object$control$nb_pointsGK)
wk.den <- list.GaussKronrod$wk
st_calc.den <- list.GaussKronrod$st
P.den <- list.GaussKronrod$P
id.GK.den <- list.GaussKronrod$id.GK
if((c("variability") %in% object$control$sharedtype)){
list.data.current.time <- data.time(data.long.until.time.s.id,s, object$control$formFixedVar, object$control$formRandomVar,object$control$timeVar)
list.data.GK.current <- data.time(list.GaussKronrod$data.id2, c(t(st_calc.den)),
object$control$formFixedVar, object$control$formRandomVar,object$control$timeVar)
Otime.den <- list.data.current.time$Xtime
Wtime.den <- list.data.current.time$Utime
Os.den <- list.data.GK.current$Xtime
Ws.den <- list.data.GK.current$Utime
}
if((c("current value") %in% object$control$sharedtype)){
list.data.current.time <- data.time(data.long.until.time.s.id,s, object$control$formFixed, object$control$formRandom,object$control$timeVar)
list.data.GK.current <- data.time(list.GaussKronrod$data.id2, c(t(st_calc.den)),
object$control$formFixed, object$control$formRandom,object$control$timeVar)
Xtime.den <- list.data.current.time$Xtime
Utime.den <- list.data.current.time$Utime
Xs.den <- list.data.GK.current$Xtime
Us.den <- list.data.GK.current$Utime
}
if((c("slope") %in% object$control$sharedtype)){
list.data.slope.time <- data.time(data.long.until.time.s.id, s, object$control$formSlopeFixed, object$control$formSlopeRandom,object$control$timeVar)
list.data.GK.slope <- data.time(list.GaussKronrod$data.id2, c(t(st_calc.den)),
object$control$formSlopeFixed, object$control$formSlopeRandom,object$control$timeVar)
Xslope.den <- list.data.slope.time$Xtime
Uslope.den <- list.data.slope.time$Utime
Xs.slope.den <- list.data.GK.slope$Xtime
Us.slope.den <- list.data.GK.slope$Utime
}
}
if(object$control$hazard_baseline == "Splines"){
Bs.den <- splines::splineDesign(object$control$knots.hazard_baseline.splines, c(t(st_calc.den)), ord = 4L)
}
if(object$control$competing_risk){
if((c("random effect") %in% object$control$sharedtype_CR)){
stop("Not implemented yet")
}else{
list.GaussKronrod <- data.GaussKronrod(data.long.until.time.s.id, s, k = object$control$nb_pointsGK)
wk.den <- list.GaussKronrod$wk
st_calc.den <- list.GaussKronrod$st
P.den <- list.GaussKronrod$P
id.GK.den <- list.GaussKronrod$id.GK
if((c("current value") %in% object$control$sharedtype_CR)){
#list.data.current.time <- data.time(data.long.until.time.s.id, s, object$control$formFixed, object$control$formRandom,object$control$timeVar)
list.data.GK.current <- data.time(list.GaussKronrod$data.id2, c(t(st_calc.den)),
object$control$formFixed, object$control$formRandom,object$control$timeVar)
Xs.den <- list.data.GK.current$Xtime
Us.den <- list.data.GK.current$Utime
}
if((c("slope") %in% object$control$sharedtype_CR)){
#list.data.slope.time <- data.time(data.until.time.s.id, list.surv$Time, formSlopeFixed, formSlopeRandom,timeVar)
list.data.GK.slope <- data.time(list.GaussKronrod$data.id2, c(t(st_calc.den)),
object$control$formSlopeFixed, object$control$formSlopeRandom,object$control$timeVar)
#Xslope <- list.data.slope.time$Xtime
#Uslope <- list.data.slope.time$Utime
Xs.slope.den <- list.data.GK.slope$Xtime
Us.slope.den <- list.data.GK.slope$Utime
}
}
if(object$control$hazard_baseline_CR == "Splines"){
Bs.CR.den <- splines::splineDesign(object$control$knots.hazard_baseline.splines.CR, c(t(st_calc.den)), ord = 4L)
}
}
etaBaseline <- 0
survLong <- 0
if((c("variability") %in% object$control$sharedtype)){
sigma.GK.den <- exp(matrix(rep(omega%*%t(Os.den),object$control$S2),nrow=object$control$S2,byrow = T)+ b_om%*%t(Ws.den))
survLong <- survLong + alpha.sigma*sigma.GK.den
}
if(object$control$competing_risk){
etaBaseline_CR <- 0
survLong_CR <- 0
if((c("variability") %in% object$control$sharedtype_CR)){
survLong_CR <- survLong_CR + alpha.sigma.CR*sigma.GK.den
}
}
if((c("current value") %in% object$control$sharedtype) || (c("current value") %in% object$control$sharedtype_CR)){
current.GK <- matrix(rep(beta%*%t(Xs.den),object$control$S2),nrow=object$control$S2,byrow = T) + b_al%*%t(Us.den)
if((c("current value") %in% object$control$sharedtype)){
survLong <- survLong + alpha.current*current.GK
}
if(object$control$competing_risk && (c("current value") %in% object$control$sharedtype_CR)){
survLong_CR <- survLong_CR + alpha.current.CR*current.GK
}
}
if((c("slope") %in% object$control$sharedtype)|| (c("slope") %in% object$control$sharedtype_CR)){
slope.GK <- matrix(rep(beta[object$control$indices_beta_slope]%*%t(Xs.slope.den),object$control$S2),nrow=object$control$S2,byrow = T) + b_al[,-1]%*%t(Us.slope.den)
if((c("slope") %in% object$control$sharedtype)){
survLong <- survLong + alpha.slope*slope.GK
}
if(object$control$competing_risk && (c("slope") %in% object$control$sharedtype_CR)){
survLong_CR <- survLong_CR + alpha.slope.CR*slope.GK
}
}
if(object$control$hazard_baseline == "Exponential"){
h_0 <- 1
h_0.GK <- wk.den
}
if(object$control$hazard_baseline == "Weibull"){
h_0 <- shape*(s**(shape-1))
h_0.GK <- shape*(st_calc.den**(shape-1))*wk.den
}
if(object$control$hazard_baseline == "Splines"){
mat_h0s <- matrix(gamma,ncol=1)
h_0.GK <- (wk.den*exp(Bs.den%*%mat_h0s))
}
###hazard function
if(length(Z)==0){
pred_surv <- 0
}else{
pred_surv <- (alpha%*%Z)[1,1]
}
etaBaseline <- etaBaseline + pred_surv
###GK integration
survLong <- exp(survLong)
h_0.GK <- as.vector(h_0.GK)
survLong <- survLong%*%h_0.GK
Surv <- (-exp(etaBaseline)*P.den*survLong)
if(object$control$competing_risk){
###h0
if(object$control$hazard_baseline_CR == "Exponential"){
h_0.CR <- 1
h_0.GK.CR <- wk.den
if(object$control$left_trunc){
h_0.GK.0_CR <- wk.den
}
}
if(object$control$hazard_baseline_CR == "Weibull"){
h_0.GK.CR <- shape.CR*(st_calc.den**(shape.CR-1))*wk.den
}
if(object$control$hazard_baseline_CR == "Splines"){
mat_h0s.CR <- matrix(gamma.CR,ncol=1)
h_0.GK.CR <- (wk.den*exp(Bs.CR.den%*%mat_h0s.CR))
}
###hazard function
if(length(Z_CR)==0){
pred_surv.CR <- 0
}else{
pred_surv.CR <- (alpha.CR%*%Z_CR)[1,1]
}
etaBaseline_CR <- etaBaseline_CR + pred_surv.CR
###GK integration
survLong_CR <- exp(survLong_CR)
h_0.GK.CR <- as.vector(h_0.GK.CR)
survLong_CR <- survLong_CR%*%h_0.GK.CR
Surv.CR <- (-exp(etaBaseline_CR)*P.den*survLong_CR)
}
if(object$control$competing_risk){
denominateur <- exp(Surv+Surv.CR)*f_Y_b_sigma
}
else{
denominateur <- exp(Surv)*f_Y_b_sigma
}
denominateur <- mean(denominateur)
#print(denominateur)
pred.current <- numerateur/denominateur
table.predyn.ponct <- rbind(table.predyn.ponct,pred.current)
#print(pred.current)
#pred.current
}
table.predyn.ponct
#newdata$id <- 1
#res.pred
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.