Nothing
resemble <- function(approach, base, nn = NULL, bounds = NULL, ...){
tsp(base) <- NULL # Remove ts
class_base <- approach
# Set class of 'base' to include 'approach' and reconcile
class(approach) <- c(class(approach), class_base)
rmat <- .resemble(approach = approach, base = base, nn = nn, bounds = bounds, ...)
# Check if 'nn' is provided and adjust 'rmat' accordingly
if(!is.null(nn)){
if(nn %in% c("osqp", TRUE)){
nn <- paste(approach, "osqp", sep = "_")
}
if(!all(rmat >= -sqrt(.Machine$double.eps), na.rm = TRUE)){
class(approach)[length(class(approach))] <- nn
rmat <- .resemble(approach = approach, base = base, nn = nn, reco = rmat,
bounds = bounds, ...)
}else if(!all(rmat >= 0, na.rm = TRUE)){
rmat[rmat < 0] <- 0
}
}
if(!is.null(bounds)){
nbid <- bounds[,1,drop = TRUE]
checkb <- apply(rmat, 1, function(x){
idl <- any(x[nbid]<bounds[,2,drop = TRUE] - sqrt(.Machine$double.eps))
idb <- any(x[nbid]>bounds[, 3, drop = TRUE] + sqrt(.Machine$double.eps))
idl0 <- any(x[nbid]<bounds[,2,drop = TRUE])
idb0 <- any(x[nbid]>bounds[, 3, drop = TRUE])
c(any(c(idl, idb)), any(c(idl0, idb0)))
})
if(any(checkb[1,], na.rm = TRUE)){
if(is.null(attr(bounds, "approach")) || attr(bounds, "approach") == "osqp"){
attr(bounds, "approach") <- paste(approach, "osqp", sep = "_")
}
class(approach)[length(class(approach))] <- attr(bounds, "approach")
rmat <- .resemble(approach = approach, base = base, nn = nn, reco = rmat,
bounds = bounds, ...)
}else if(any(checkb[2,], na.rm = TRUE)){
rmat <- t(apply(rmat, 1, function(x){
id <- x[nbid]<=bounds[,2,drop = TRUE]+sqrt(.Machine$double.eps)
x[nbid][id] <- bounds[,2,drop = TRUE][id]
id <- x[nbid]>=bounds[, 3, drop = TRUE]-sqrt(.Machine$double.eps)
x[nbid][id] <- bounds[, 3, drop = TRUE][id]
x
}))
}
}
return(rmat)
}
.resemble <- function(approach, ...){
UseMethod("resemble", approach)
}
resemble.proj <- function(base, cons_mat, cov_mat, p, ina, ...){
# check input
if(missing(base) | missing(cons_mat) | missing(cov_mat)){
cli_abort("Mandatory arguments: {.arg base}, {.arg cons_mat} and {.arg cov_mat}.",
call = NULL)
}
k_mat <- Matrix::kronecker(rep(1, p), .sparseDiagonal(NCOL(cons_mat)))[!ina, , drop = FALSE]
if(NCOL(base) != NROW(cov_mat)){
cli_abort("The size of the matrices does not match.", call = NULL)
}
if(any(ina)){
if(any(colSums(k_mat) == 0)){
cli_abort("Each variable must have at least one base forecasts.", call = NULL)
}
}
if(isDiagonal(cov_mat)){
cov_inv <- Matrix::.sparseDiagonal(x = Matrix::diag(cov_mat)^(-1))
cov_k <- Matrix::crossprod(k_mat, cov_inv)%*%k_mat
cov_k_inv <- Matrix::.sparseDiagonal(x = Matrix::diag(cov_k)^(-1))
base_comp <- Matrix::tcrossprod(base, cov_inv)%*%Matrix::tcrossprod(k_mat, cov_k_inv)
lm_sx1 <- methods::as(cons_mat%*%Matrix::tcrossprod(cov_k_inv, cons_mat), "CsparseMatrix")
lm_dx1 <- methods::as(Matrix::tcrossprod(cons_mat, base_comp), "CsparseMatrix")
reco <- base_comp - t(Matrix::tcrossprod(cov_k_inv, cons_mat)%*%lin_sys(lm_sx1, lm_dx1))
}else{
cov_k <- lin_sys(cov_mat, k_mat)
k_cov_k <- methods::as(Matrix::crossprod(k_mat, cov_k), "CsparseMatrix")
cov_c <- lin_sys(k_cov_k, t(cons_mat))
c_cov_c <- methods::as(cons_mat%*%cov_c, "CsparseMatrix")
ls1 <- lin_sys(c_cov_c, cons_mat)
ls2 <- lin_sys(k_cov_k, t(cov_k))
base_comp <- methods::as(Matrix::tcrossprod(base, ls2), "CsparseMatrix")
reco <- base_comp - t(cov_c%*%ls1%*%t(base_comp))
}
return(as.matrix(reco))
}
resemble.strc <- function(base, strc_mat, cov_mat, p, ina, ...){
# check input
if(missing(base) | missing(strc_mat) | missing(cov_mat)){
cli_abort("Mandatory arguments: {.arg base}, {.arg strc_mat} and {.arg cov_mat}.",
call = NULL)
}
if(is.null(strc_mat)){
cli_abort("Please provide a valid {.arg agg_mat} for the structural approach.",
call = NULL)
}
strc_matp <- Matrix::kronecker(rep(1, p), strc_mat)[!ina, , drop = FALSE]
if(NROW(strc_matp) != NROW(cov_mat) | NCOL(base) != NROW(cov_mat)){
cli_abort("The size of the matrices does not match.", call = NULL)
}
# Point reconciled forecasts
if(isDiagonal(cov_mat)){
cov_mat_inv <- .sparseDiagonal(x = diag(cov_mat)^(-1))
StWm <- Matrix::crossprod(strc_matp, cov_mat_inv)
lm_sx1 <- methods::as(StWm %*% strc_matp, "CsparseMatrix")
lm_dx1 <- methods::as(Matrix::tcrossprod(StWm, base), "CsparseMatrix")
reco <- t(strc_mat %*% lin_sys(lm_sx1, lm_dx1))
return(as.matrix(reco))
} else {
Q <- lin_sys(cov_mat, strc_matp)
lm_sx1 <- methods::as(t(strc_matp) %*% Q, "CsparseMatrix")
lm_dx1 <- methods::as(t(base %*% Q), "CsparseMatrix")
reco <- t(strc_mat %*% lin_sys(lm_sx1, lm_dx1))
return(as.matrix(reco))
}
}
resemble.proj_osqp <- function(base, cons_mat, cov_mat, p, ina,
nn = NULL, id_nn = NULL, bounds = NULL,
reco = NULL, settings = NULL, ...){
# check input
if(missing(base) | missing(cons_mat) | missing(cov_mat)){
cli_abort("Mandatory arguments: {.arg base}, {.arg cons_mat} and {.arg cov_mat}.",
call = NULL)
}
k_mat <- Matrix::kronecker(rep(1, p), .sparseDiagonal(NCOL(cons_mat)))[!ina, , drop = FALSE]
if(NCOL(base) != NROW(cov_mat)){
cli_abort("The size of the matrices does not match.", call = NULL)
}
if(is.null(id_nn)){
id_nn <- rep(1, NCOL(cons_mat))
}
if(!is.null(nn) & !is.null(reco)){
id <- which(rowSums(reco < (-sqrt(.Machine$double.eps))) != 0)
if(!is.null(bounds)){
id_b <- which(apply(reco[, bounds[,1], drop = FALSE], 1,
function(x) any(x <= bounds[,2]) | any(x >= bounds[,3])))
if(length(id_b) > 0){
id <- sort(unique(c(id, id_b)))
}
}
if(length(id) == 0){
reco[reco < 0] <- 0
return(reco)
}
} else {
id <- 1:NROW(base)
}
c <- ncol(cons_mat)
r <- nrow(cons_mat)
# Linear constrains H = 0
l <- rep(0, r)
u <- rep(0, r)
A <- cons_mat
# P matrix
if(isDiagonal(cov_mat)){
cov_inv <- Diagonal(x = diag(cov_mat)^(-1))
cov_k1 <- cov_inv%*%k_mat
} else {
cov_k1 <- lin_sys(cov_mat, k_mat)
}
P <- methods::as(Matrix::crossprod(k_mat, cov_k1), "CsparseMatrix")
# nn constraints (only on the building block variables)
if(!is.null(nn)){
if(!(nn %in% c("osqp", TRUE, "proj_osqp"))){
cli_warn("Non-negative reconciled forecasts obtained with osqp.", call = NULL)
}
A <- rbind(A, .sparseDiagonal(c)[id_nn == 1, ])
l <- c(l, rep(0, sum(id_nn)))
u <- c(u, rep(Inf, sum(id_nn)))
}
# other constraints
if(!is.null(bounds)){
A <- rbind(A, Diagonal(c)[bounds[,1,drop = TRUE], ])
l <- c(l, bounds[,2,drop = TRUE])
u <- c(u, bounds[,3,drop = TRUE])
}
if(is.null(settings)){
settings <- osqpSettings(
verbose = FALSE,
eps_abs = 1e-5,
eps_rel = 1e-5,
polish_refine_iter = 100,
polish = TRUE
)
}
# OSQP
osqp_step <- apply(base[id, , drop = FALSE], 1, function(x){
q <- (-1) * t(cov_k1) %*% as.vector(x)
rec <- solve_osqp(P, q, A, l, u, settings)
# Fix a problem of osqp
if(rec$info$status_val == -4){
u[u == Inf] <- max(x)*100
rec <- solve_osqp(P, q, A, l, u, settings)
}
out <- list()
out$reco <- rec$x
if(rec$info$status_val != 1){
cli_warn(c("x"="OSQP failed: check the results.",
"i"="OSQP flag = {rec$info$status_val}",
"i"="OSQP pri_res = {rec$info$pri_res}"), call = NULL)
}
if(!is.null(bounds)){
nbid <- bounds[,1,drop = TRUE]
id <- out$reco[nbid]<=bounds[,2,drop = TRUE]+sqrt(.Machine$double.eps)
out$reco[nbid][id] <- bounds[,2,drop = TRUE][id]
id <- out$reco[nbid]>=bounds[, 3, drop = TRUE]-sqrt(.Machine$double.eps)
out$reco[nbid][id] <- bounds[, 3, drop = TRUE][id]
}
out$info <- c(rec$info$obj_val, rec$info$run_time, rec$info$iter,
rec$info$pri_res, rec$info$status_val, rec$info$status_polish)
return(out)
})
osqp_step <- do.call("rbind", osqp_step)
# Point reconciled forecasts
if(!is.null(reco)){
reco[id, ] <- do.call("rbind", osqp_step[, "reco"])
}else{
reco <- do.call("rbind", osqp_step[, "reco"])
}
if(!is.null(nn)){
reco[which(reco <= sqrt(.Machine$double.eps))] <- 0
}
class(reco) <- setdiff(class(reco), "proj_osqp")
info <- do.call("rbind", osqp_step[, "info"])
colnames(info) <- c(
"obj_val", "run_time", "iter", "pri_res",
"status", "status_polish"
)
rownames(info) <- id
attr(reco, "info") <- info
return(reco)
}
resemble.strc_osqp <- function(base, strc_mat, cov_mat, p, ina,
nn = NULL, id_nn = NULL, bounds = NULL,
reco = NULL, settings = NULL, ...){
# check input
if(missing(base) | missing(strc_mat) | missing(cov_mat)){
cli_abort("Mandatory arguments: {.arg base}, {.arg strc_mat} and {.arg cov_mat}.",
call = NULL)
}
if(is.null(strc_mat)){
cli_abort("Please provide a valid {.arg agg_mat} for the structural approach.",
call = NULL)
}
strc_matp <- Matrix::kronecker(rep(1, p), strc_mat)[!ina, , drop = FALSE]
if(NROW(strc_matp) != NROW(cov_mat) | NCOL(base) != NROW(cov_mat)){
cli_abort("The size of the matrices does not match.", call = NULL)
}
if(any(is.na(base))){
ina <- is.na(base[1,])
cov_mat <- cov_mat[!ina, !ina, drop = FALSE]
strc_matp <- strc_matp[!ina, , drop = FALSE]
base <- base[, !ina, drop = FALSE]
check_na <- matrix(!ina, NROW(strc_mat), p)
if(any(rowSums(check_na) == 0)){
cli_abort("Each variable must have at least one base forecasts.", call = NULL)
}
}
if(is.null(id_nn)){
bts <- find_bts(strc_mat)
id_nn <- rep(0, NROW(strc_mat))
id_nn[bts] <- 1
}
if(!is.null(nn) & !is.null(reco)){
id <- which(rowSums(reco < (-sqrt(.Machine$double.eps))) != 0)
if(!is.null(bounds)){
id_b <- which(apply(reco, 1, function(x) all(bounds[,1] <= x) & all(bounds[,2] >= x)))
if(length(id_b) > 0){
id <- sort(unique(c(id, id_b)))
}
}
if(length(id) == 0){
reco[reco < 0] <- 0
return(reco)
}
} else {
id <- 1:NROW(base)
}
r <- NROW(strc_mat)
c <- NCOL(strc_mat)
A <- NULL
l <- NULL
u <- NULL
# P matrix and q1 vector
if(isDiagonal(cov_mat)){
Q <- Diagonal(x = diag(cov_mat)^(-1))
P <- t(strc_matp) %*% Q %*% strc_matp
q1 <- (-1) * t(Q %*% strc_matp)
} else {
Q <- lin_sys(cov_mat, strc_matp)
P <- t(strc_matp) %*% Q
q1 <- (-1) * t(Q)
}
if(isDiagonal(cov_mat)){
cov_inv <- Diagonal(x = diag(cov_mat)^(-1))
cov_Sp <- cov_inv%*%strc_matp
} else {
cov_Sp <- lin_sys(cov_mat, strc_matp)
}
P <- methods::as(Matrix::crossprod(strc_matp, cov_Sp), "CsparseMatrix")
# nn constraints (only on the building block variables - bottom variables)
if(!is.null(nn)){
if(!(nn %in% c("osqp", TRUE, "strc_osqp"))){
cli_warn("Non-negative reconciled forecasts obtained with osqp.", call = NULL)
}
A <- .sparseDiagonal(c)
l <- rep(0, sum(c))
u <- rep(Inf, sum(c))
}
# other constraints
if(!is.null(bounds)){
A <- rbind(A, strc_mat[bounds[,1,drop = TRUE], ,drop = FALSE])
l <- c(l, bounds[,2,drop = TRUE])
u <- c(u, bounds[,3,drop = TRUE])
}
if(is.null(settings)){
settings <- osqpSettings(
verbose = FALSE,
eps_abs = 1e-5,
eps_rel = 1e-5,
polish_refine_iter = 100,
polish = TRUE
)
}
# OSQP
osqp_step <- apply(base[id, , drop = FALSE], 1, function(x){
q <- (-1) * t(cov_Sp) %*% as.vector(x)
rec <- solve_osqp(P, q, A, l, u, settings)
# Fix a problem of osqp
if(rec$info$status_val == -4){
u[u == Inf] <- max(x)*100
rec <- solve_osqp(P, q, A, l, u, settings)
}
out <- list()
out$reco <- as.numeric(strc_mat %*% rec$x)
if(rec$info$status_val != 1){
cli_warn(c("x"="OSQP failed: check the results.",
"i"="OSQP flag = {rec$info$status_val}",
"i"="OSQP pri_res = {rec$info$pri_res}"), call = NULL)
}
if(!is.null(bounds)){
nbid <- bounds[,1,drop = TRUE]
id <- out$reco[nbid]<=bounds[,2,drop = TRUE]+sqrt(.Machine$double.eps)
out$reco[nbid][id] <- bounds[,2,drop = TRUE][id]
id <- out$reco[nbid]>=bounds[, 3, drop = TRUE]-sqrt(.Machine$double.eps)
out$reco[nbid][id] <- bounds[, 3, drop = TRUE][id]
}
out$info <- c(
rec$info$obj_val, rec$info$run_time, rec$info$iter, rec$info$pri_res,
rec$info$status_val, rec$info$status_polish
)
return(out)
})
osqp_step <- do.call("rbind", osqp_step)
# Point reconciled forecasts
if(!is.null(reco)){
reco[id, ] <- do.call("rbind", osqp_step[, "reco"])
}else{
reco <- do.call("rbind", osqp_step[, "reco"])
}
if(!is.null(nn)){
reco[which(reco <= sqrt(.Machine$double.eps))] <- 0
}
class(reco) <- setdiff(class(reco), "strc_osqp")
info <- do.call("rbind", osqp_step[, "info"])
colnames(info) <- c(
"obj_val", "run_time", "iter", "pri_res",
"status", "status_polish"
)
rownames(info) <- id
attr(reco, "info") <- info
return(reco)
}
resemble.sntz <- function(base, reco, strc_mat, id_nn = NULL, settings = NULL, ...){
# Check input
if(missing(strc_mat)){
cli_abort("Mandatory arguments: {.arg strc_mat}.",
call = NULL)
}
if(missing(reco)){
reco <- base
}
if(is.null(strc_mat)){
cli_abort(c("Argument {.arg agg_mat} is missing. The {.strong sntz} approach
is available only for hierarchical/groupped time series."), call = NULL)
}
if(is.null(id_nn)){
bts <- find_bts(strc_mat)
id_nn <- rep(0, NCOL(reco))
id_nn[bts] <- 1
}
bts <- reco[, id_nn == 1, drop = FALSE]
if(is.null(settings$type)){
sntz_type <- "bu"
}else{
sntz_type <- settings$type
}
tol <- sqrt(.Machine$double.eps)
switch(sntz_type,
bu = {
bts[bts<tol] <- 0
})
as.matrix(bts %*% t(strc_mat))
}
resemble.sftb <- function(base, reco, strc_mat, id_nn = NULL, bounds = NULL, ...){
# Check input
if(missing(strc_mat)){
cli_abort("Mandatory arguments: {.arg strc_mat}.",
call = NULL)
}
if(missing(reco)){
reco <- base
}
if(is.null(bounds)){
return(reco)
}
if(is.null(strc_mat)){
cli_abort(c("Argument {.arg agg_mat} is missing. The {.strong sftb} approach
is available only for hierarchical/groupped time series."), call = NULL)
}
if(is.null(id_nn)){
bts <- find_bts(strc_mat)
id_nn <- rep(0, NCOL(reco))
id_nn[bts] <- 1
}
nbid <- bounds[,1,drop = TRUE]
reco <- t(apply(reco, 1, function(x){
id <- x[nbid]<=bounds[,2,drop = TRUE]+sqrt(.Machine$double.eps)
x[nbid][id] <- bounds[,2,drop = TRUE][id]
id <- x[nbid]>=bounds[, 3, drop = TRUE]-sqrt(.Machine$double.eps)
x[nbid][id] <- bounds[, 3, drop = TRUE][id]
x
}))
bts <- reco[, id_nn == 1, drop = FALSE]
as.matrix(bts %*% t(strc_mat))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.