Nothing
#' Estimate the inflation factor for a distribution of P-values
#'
#' Estimate the inflation factor for a distribution of P-values or 1df
#' chi-square test. The major use of this procedure is the Genomic Control, but
#' can also be used to visualise the distribution of P-values coming from other
#' tests. Methods implemented include 'median' (median(chi2)/0.455...),
#' regression (of observed onto expected) and 'KS' (optimizing the
#' chi2.1df distribution fit by use of Kolmogorov-Smirnov test)
#'
#'
#' @param data A vector of reals. If all are <=1, it is assumed that this is a
#' vector of P-values, else it is treated as a vector of chi-squares
#' @param plot Whether the plot should be shown or not (default).
#' @param proportion The proportion of lowest P (or
#' \eqn{\chi^2}{chi^2) values to be used when estimating the inflation
#' factor \eqn{\lambda}{lambda}.
#' @param method "regression" (default), "median", or "KS": method to
#' be used for \eqn{\lambda}{lambda} estimation.
#' @param filter if the test statistics with 0-value of
#' \eqn{\chi^2}{chi^2} should be excluded prior to estimation of
#' \eqn{\lambda}{lambda}.
#' @param df Number of degrees of freedom.
#' @param ... arguments passed to the \code{\link{plot}} function.
#' @return A list with elements \item{estimate}{Estimate of \eqn{\lambda}{lambda}}
#' \item{se}{Standard error of the estimate}
#' @author Yurii Aulchenko
#' @seealso \code{\link{ccfast}}, \code{\link{qtscore}}
#' @keywords htest
#' @examples
#'
#' data(srdta)
#' pex <- summary(gtdata(srdta))[,"Pexact"]
#' estlambda(pex, plot=TRUE)
#' estlambda(pex, method="regression", proportion = 0.95)
#' estlambda(pex, method="median")
#' estlambda(pex, method="KS")
#' a <- qtscore(bt,srdta)
#' lambda(a)
#'
"estlambda" <- function(data, plot=FALSE, proportion=1.0,
method="regression", filter=TRUE, df=1,... ) {
data <- data[which(!is.na(data))]
if (proportion>1.0 || proportion<=0)
stop("proportion argument should be greater then zero and less than or equal to one")
ntp <- round( proportion * length(data) )
if ( ntp<1 ) stop("no valid measurements")
if ( ntp==1 ) {
warning(paste("One measurement, lambda = 1 returned"))
return(list(estimate=1.0, se=999.99))
}
if ( ntp<10 ) warning(paste("number of points is too small:", ntp))
if ( min(data)<0 ) stop("data argument has values <0")
if ( max(data)<=1 ) {
# lt16 <- (data < 1.e-16)
# if (any(lt16)) {
# warning(paste("Some probabilities < 1.e-16; set to 1.e-16"))
# data[lt16] <- 1.e-16
# }
data <- qchisq(data, 1, lower.tail=FALSE)
}
if (filter)
{
data[which(abs(data)<1e-8)] <- NA
}
data <- sort(data)
ppoi <- ppoints(data)
ppoi <- sort(qchisq(ppoi, df=df, lower.tail=FALSE))
data <- data[1:ntp]
ppoi <- ppoi[1:ntp]
# s <- summary(lm(data~offset(ppoi)))$coeff
# bug fix thanks to Franz Quehenberger
out <- list()
if (method=="regression") {
s <- summary( lm(data~0+ppoi) )$coeff
out$estimate <- s[1,1]
out$se <- s[1,2]
} else if (method=="median") {
out$estimate <- median(data, na.rm=TRUE)/qchisq(0.5, df)
out$se <- NA
} else if (method=="KS") {
limits <- c(0.5, 100)
out$estimate <- estLambdaKS(data, limits=limits, df=df)
if ( abs(out$estimate-limits[1])<1e-4 || abs(out$estimate-limits[2])<1e-4 )
warning("using method='KS' lambda too close to limits, use other method")
out$se <- NA
} else {
stop("'method' should be either 'regression' or 'median'!")
}
if (plot) {
lim <- c(0, max(data, ppoi,na.rm=TRUE))
# plot(ppoi,data,xlim=lim,ylim=lim,xlab="Expected",ylab="Observed", ...)
oldmargins <- par()$mar
par(mar=oldmargins + 0.2)
plot(ppoi, data,
xlab=expression("Expected " ~ chi^2),
ylab=expression("Observed " ~ chi^2),
...)
abline(a=0, b=1)
abline(a=0, b=out$estimate, col="red")
par(mar=oldmargins)
}
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.