Nothing
#' @title
#' Normal-reference-test with two-cumulant (2-c) matched $\\chi^2$-approximation for GLHT problem proposed Zhang et al. (2017)
#' @description
#' Zhang et al. (2017)'s test for general linear hypothesis testing (GLHT) problem for high-dimensional data with assuming that underlying covariance matrices are the same.
#' @usage ZGZ2017.GLHT.2cNRT(Y,G,n,p)
#' @param Y A list of \eqn{k} data matrices. The \eqn{i}th element represents the data matrix (\eqn{n_i\times p}) from the \eqn{i}th population with each row representing a \eqn{p}-dimensional observation.
#' @param G A known full-rank coefficient matrix (\eqn{q\times k}) with \eqn{\operatorname{rank}(\boldsymbol{G})<k}.
#' @param n A vector of \eqn{k} sample sizes. The \eqn{i}th element represents the sample size of group \eqn{i}, \eqn{n_i}.
#' @param p The dimension of data.
#'
#' @details
#' Suppose we have the following \eqn{k} independent high-dimensional samples:
#' \deqn{
#' \boldsymbol{y}_{i1},\ldots,\boldsymbol{y}_{in_i}, \;\operatorname{are \; i.i.d. \; with}\; \operatorname{E}(\boldsymbol{y}_{i1})=\boldsymbol{\mu}_i,\; \operatorname{Cov}(\boldsymbol{y}_{i1})=\boldsymbol{\Sigma},\;i=1,\ldots,k.
#' }
#' It is of interest to test the following GLHT problem:
#' \deqn{H_0: \boldsymbol{G M}=\boldsymbol{0}, \quad \text { vs. } \quad H_1: \boldsymbol{G M} \neq \boldsymbol{0},}
#' where
#' \eqn{\boldsymbol{M}=(\boldsymbol{\mu}_1,\ldots,\boldsymbol{\mu}_k)^\top} is a \eqn{k\times p} matrix collecting \eqn{k} mean vectors and \eqn{\boldsymbol{G}:q\times k} is a known full-rank coefficient matrix with \eqn{\operatorname{rank}(\boldsymbol{G})<k}.
#'
#' Zhang et al. (2017) proposed the following test statistic:
#' \deqn{
#' T_{ZGZ}=\|\boldsymbol{C \hat{\mu}}\|^2,
#' }
#' where \eqn{\boldsymbol{C}=[(\boldsymbol{G D G}^\top)^{-1/2}\boldsymbol{G}]\otimes\boldsymbol{I}_p}, and \eqn{\hat{\boldsymbol{\mu}}=(\bar{\boldsymbol{y}}_1^\top,\ldots,\bar{\boldsymbol{y}}_k^\top)^\top}, with \eqn{\bar{\boldsymbol{y}}_{i},i=1,\ldots,k} being the sample mean vectors and \eqn{\boldsymbol{D}=\operatorname{diag}(1/n_1,\ldots,1/n_k)}.
#'
#' They showed that under the null hypothesis, \eqn{T_{ZGZ}} and a chi-squared-type mixture have the same normal or non-normal limiting distribution.
#
#' @references
#' \insertRef{Zhang_2017}{HDNRA}
#'
#'
#'
#' @return A list of class \code{"NRtest"} containing the results of the hypothesis test. See the help file for \code{\link{NRtest.object}} for details.
#'
#' @examples
#' library("HDNRA")
#' data("corneal")
#' dim(corneal)
#' group1 <- as.matrix(corneal[1:43, ]) ## normal group
#' group2 <- as.matrix(corneal[44:57, ]) ## unilateral suspect group
#' group3 <- as.matrix(corneal[58:78, ]) ## suspect map group
#' group4 <- as.matrix(corneal[79:150, ]) ## clinical keratoconus group
#' p <- dim(corneal)[2]
#' Y <- list()
#' k <- 4
#' Y[[1]] <- group1
#' Y[[2]] <- group2
#' Y[[3]] <- group3
#' Y[[4]] <- group4
#' n <- c(nrow(Y[[1]]),nrow(Y[[2]]),nrow(Y[[3]]),nrow(Y[[4]]))
#' G <- cbind(diag(k-1),rep(-1,k-1))
#' ZGZ2017.GLHT.2cNRT(Y,G,n,p)
#' @concept nraglht
#' @export
#
ZGZ2017.GLHT.2cNRT <- function(Y, G, n, p) {
stats <- zgz2017_glht_2cnrt_cpp(Y, G, n, p)
stat <- stats[1]
beta <- stats[2]
df <- stats[3]
# Adjust the statistic for the chi-squared distribution
adjusted_stat = stat / beta
# Calculate p-value
pvalue <- pchisq(
q = adjusted_stat, df = df, ncp = 0, lower.tail = FALSE, log.p = FALSE
)
# Prepare the result as an NRtest object
hname <- paste("Zhang et al. (2017)'s test", sep = "")
hname1 <- paste("2-c matched chi^2-approximation", sep = "")
null.value <- "true"
attr(null.value, "names") <- "The general linear hypothesis"
alternative <- "two.sided"
out <- list(
statistic = c("T[ZGZ]" = round(stat,4)),
parameter = c("df" = round(df,4), "beta" = round(beta,4)),
p.value = pvalue,
method = hname,
estimation.method = hname1,
data.name = deparse(substitute(Y)),
null.value = null.value,
sample.size = c(n = n),
sample.dimension = p,
alternative = alternative
)
class(out) <- "NRtest"
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.