R/HDtweedie.R

Defines functions HDtweedie

Documented in HDtweedie

HDtweedie <- function(x, y, group = NULL, p = 1.50, weights = rep(1,nobs), alpha = 1, nlambda = 100, lambda.factor = ifelse(nobs < nvars, 0.05, 0.001), 
    lambda = NULL, pf = sqrt(bs), dfmax = as.integer(max(group)) + 
        1, pmax = min(dfmax * 1.2, as.integer(max(group))), standardize = FALSE, eps = 1e-08, maxit = 3e+08) {
    #################################################################################
    #\tDesign matrix setup, error checking
    this.call <- match.call()
    
    if (!is.matrix(x)) 
        stop("x has to be a matrix")
    
    if (any(is.na(x))) 
        stop("Missing values in x not allowed!")
    
    y <- drop(y)
    np <- dim(x)
    nobs <- as.integer(np[1])
    nvars <- as.integer(np[2])
    vnames <- colnames(x)
    
    if (is.null(vnames)) 
        vnames <- paste("V", seq(nvars), sep = "")
    
    if (length(y) != nobs) 
        stop("x and y have different number of rows")
    
    if (!is.numeric(y)) 
        stop("The response y must be numeric. Factors must be converted to numeric")
    
    c1 <- any(y < 0)
    if (c1) 
        stop("The response y must be positive")
    #################################################################################
    #    group setup
    if (is.null(group)) {
        group <- 1:nvars
    } else if (length(group) != nvars) 
        stop("group length does not match the number of predictors in x")
    
    bn <- as.integer(max(group))
    bs <- as.integer(as.numeric(table(group)))
    
    if (!identical(as.integer(sort(unique(group))), as.integer(1:bn))) 
        stop("Groups must be consecutively numbered 1,2,3,...")
    
    ix <- rep(NA, bn)
    iy <- rep(NA, bn)
    j <- 1
    for (g in 1:bn) {
        ix[g] <- j
        iy[g] <- j + bs[g] - 1
        j <- j + bs[g]
    }
    ix <- as.integer(ix)
    iy <- as.integer(iy)
    group <- as.integer(group)
    
    gamma <- rep(0, bn)
    #################################################################################
    #parameter setup
    if (length(pf) != bn) 
        stop("The size of group-elastic net penalty factor must be same as the number of groups")
    maxit <- as.integer(maxit)
    pf <- as.double(pf)
    eps <- as.double(eps)
    dfmax <- as.integer(dfmax)
    pmax <- as.integer(pmax)
    #################################################################################
    #lambda setup
    nlam <- as.integer(nlambda)
    if (is.null(lambda)) {
        if (lambda.factor >= 1) 
            stop("lambda.factor should be less than 1")
        flmin <- as.double(lambda.factor)
        ulam <- double(1)
    } else {
        #flmin=1 if user define lambda
        flmin <- as.double(1)
        if (any(lambda < 0)) 
            stop("lambdas should be non-negative")
        ulam <- as.double(rev(sort(lambda)))
        nlam <- as.integer(length(lambda))
    }
    #################################################################################
    # call Fortran core
    fit <- tweediegrppath(bn, 
        bs, ix, iy, gamma, x, y, p, weights, alpha, nlam, flmin, 
        ulam, standardize, eps, dfmax, pmax, pf, maxit, nobs, nvars,   vnames, group)
    #################################################################################
    # output
    if (is.null(lambda)) 
        fit$lambda <- lamfix(fit$lambda)
    fit$call <- this.call
    class(fit) <- c("HDtweedie")
    fit
} 

Try the HDtweedie package in your browser

Any scripts or data that you put into this service are public.

HDtweedie documentation built on May 10, 2022, 9:06 a.m.