Description Usage Arguments Details Value References See Also Examples
Function for summarizing the uncertainty propagation's results in the form of a unique CDF via the weighting average approach of Dubois and Guyonnet (2011).
1 | SUMMARY_1CDF(Z0, aversion = 0.5)
|
Z0 |
Output of the uncertainty propagation function PROPAG() |
aversion |
Weight value representing the decision-maker risk aversion i.e. the balance between the lower and upper CDFs. by default, alpha=0.5. |
Details of the theory and the example in Dubois & Guyonnet (2011) Available at: https://hal-brgm.archives-ouvertes.fr/file/index/docid/578821/filename/Uncertainties_RA_09_l_dg.pdf
Vector of the same size as the number of columns of Z0.
Dubois D., Guyonnet D. 2011. Risk-informed decision-making under epistemic uncertainty. International Journal of General Systems, 40(2), 145-167.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 | ## Not run:
#################################################
#### EXAMPLE 1 of Dubois & Guyonnet (2011)
#### Probability and Possibility distributions
#################################################
#### Model function
FUN<-function(X){
UER=X[1]
EF=X[2]
I=X[3]
C=X[4]
ED=X[5]
return(UER*I*C*EF*ED/(70*70*365))
}
ninput<-5 #Number of input parameters
input<-vector(mode="list", length=ninput) # Initialisation
input[[1]]=CREATE_INPUT(
name="UER",
type="possi",
distr="triangle",
param=c(2.e-2, 5.7e-2, 1.e-1),
monoton="incr"
)
input[[2]]=CREATE_INPUT(
name="EF",
type="possi",
distr="triangle",
param=c(200,250,350),
monoton="incr"
)
input[[3]]=CREATE_INPUT(
name="I",
type="possi",
distr="triangle",
param=c(1,1.5,2.5),
monoton="incr"
)
input[[4]]=CREATE_INPUT(
name="C",
type="proba",
distr="triangle",
param=c(5e-3,20e-3,10e-3)
)
input[[5]]=CREATE_INPUT(
name="ED",
type="proba",
distr="triangle",
param=c(10,50,30)
)
####CREATION OF THE DISTRIBUTIONS ASSOCIATED TO THE PARAMETERS
input=CREATE_DISTR(input)
####VISU INPUT
PLOT_INPUT(input)
#################################################
#### PROPAGATION
#OPTIMZATION CHOICES
choice_opt=NULL #no optimization needed
param_opt=NULL
#PROPAGATION RUN
Z0_IRS<-PROPAG(N=1000,input,FUN,choice_opt,param_opt,mode="IRS")
#################################################
#### POST-PROCESSING
# VISU - PROPAGATION
PLOT_CDF(Z0_IRS,xlab="Z",ylab="CDF",main="EX 1",lwd=1.5)
# One CDF with risk aversion of 1/3
Z<-SUMMARY_1CDF(Z0_IRS,aversion=1/3)
lines(ecdf(Z),col=5,lwd=1.5)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.