Description Usage Arguments Value References See Also Examples
Function for conducting a sensitivity analysis using the pinching approach of Ferson and Tucker (2006).
1 2 | SENSI_PINCHING(Z0, Z0p, mode = "global",
threshold = NULL, level = NULL, disc=0.01)
|
Z0 |
Output of the uncertainty propagation function PROPAG(). |
Z0p |
Output of the pinching function PINCHING_fun(). |
mode |
String to specify the mode to represent the epistemic uncertainty:
|
threshold |
Threshold value to compute the interval of exceedance probabilities. |
level |
Level value to compute the interval of quantiles. |
disc |
discretisation value to compute the global indicator |
A number between 0 and 100
Ferson, S., & Tucker, W. T. (2006). Sensitivity analysis using probability bounding. Reliability Engineering & System Safety, 91(10), 1435-1442.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | ## Not run:
#################################################
#### EXAMPLE 1 of Dubois & Guyonnet (2011)
#### Probability and Possibility distributions
#################################################
#### Model function
FUN<-function(X){
UER=X[1]
EF=X[2]
I=X[3]
C=X[4]
ED=X[5]
return(UER*I*C*EF*ED/(70*70*365))
}
ninput<-5 #Number of input parameters
input<-vector(mode="list", length=ninput) # Initialisation
input[[1]]=CREATE_INPUT(
name="UER",
type="possi",
distr="triangle",
param=c(2.e-2, 5.7e-2, 1.e-1),
monoton="incr"
)
input[[2]]=CREATE_INPUT(
name="EF",
type="possi",
distr="triangle",
param=c(200,250,350),
monoton="incr"
)
input[[3]]=CREATE_INPUT(
name="I",
type="possi",
distr="triangle",
param=c(1,1.5,2.5),
monoton="incr"
)
input[[4]]=CREATE_INPUT(
name="C",
type="proba",
distr="triangle",
param=c(5e-3,20e-3,10e-3)
)
input[[5]]=CREATE_INPUT(
name="ED",
type="proba",
distr="triangle",
param=c(10,50,30)
)
####CREATION OF THE DISTRIBUTIONS ASSOCIATED TO THE PARAMETERS
input=CREATE_DISTR(input)
####VISU INPUT
PLOT_INPUT(input)
#################################################
#### PROPAGATION
#OPTIMZATION CHOICES
choice_opt=NULL #no optimization needed
param_opt=NULL
#PROPAGATION RUN
Z0_IRS<-PROPAG(N=1000,input,FUN,choice_opt,param_opt,mode="IRS")
#################################################
#### PINCHING
Z0p<-PINCHING_fun(
which=1,##first input variable
value=5.7e-2, ##pinched at the scalar value of 5.7e-2
N=1000,
input,
FUN,
choice_opt,
param_opt,
mode="IRS"
)
# VISU - PROPAGATION
PLOT_CDF(Z0_IRS,xlab="Z",ylab="CDF",main="EX PINCHING",lwd=1.5)
PLOT_CDF(Z0p,color1=3,color2=4,new=FALSE,lwd=1.5)
## quantile mode
sensi.quan<-SENSI_PINCHING(Z0_IRS,Z0p,mode="quantile",level=0.75)
print(paste("Quantile-based sensitivity measure: ",sensi.quan,sep=""))
## proba mode
sensi.proba<-SENSI_PINCHING(Z0_IRS,Z0p,mode="proba",threshold=2e-6)
print(paste("Probability-based sensitivity measure: ",sensi.proba,sep=""))
## global mode
sensi.global<-SENSI_PINCHING(Z0_IRS,Z0p,mode="global",disc=0.01)
print(paste("global sensitivity measure: ",sensi.global,sep=""))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.