Description Usage Arguments Details Value See Also Examples
Function for summarizing the uncertainty propagation's results in the form of a global indicator corresponding the area between the upper and lower CDFs.
1 | UNCERTAINTY(Z0, disc=0.01)
|
Z0 |
Output of the uncertainty propagation function PROPAG(). |
disc |
Integer to specify number of the uniform discretisation of the pair of CDFs. By default, disc=0.01 |
Details of the theory and the example in Dubois & Guyonnet (2011) Available at: https://hal-brgm.archives-ouvertes.fr/file/index/docid/578821/filename/Uncertainties_RA_09_l_dg.pdf
Value of the area between both CDFs.
PROPAG
PROBA_INTERVAL
QUAN_INTERVAL
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 | ## Not run:
#################################################
#### EXAMPLE 1 of Dubois & Guyonnet (2011)
#### Probability and Possibility distributions
#################################################
#### Model function
FUN<-function(X){
UER=X[1]
EF=X[2]
I=X[3]
C=X[4]
ED=X[5]
return(UER*I*C*EF*ED/(70*70*365))
}
ninput<-5 #Number of input parameters
input<-vector(mode="list", length=ninput) # Initialisation
input[[1]]=CREATE_INPUT(
name="UER",
type="possi",
distr="triangle",
param=c(2.e-2, 5.7e-2, 1.e-1),
monoton="incr"
)
input[[2]]=CREATE_INPUT(
name="EF",
type="possi",
distr="triangle",
param=c(200,250,350),
monoton="incr"
)
input[[3]]=CREATE_INPUT(
name="I",
type="possi",
distr="triangle",
param=c(1,1.5,2.5),
monoton="incr"
)
input[[4]]=CREATE_INPUT(
name="C",
type="proba",
distr="triangle",
param=c(5e-3,20e-3,10e-3)
)
input[[5]]=CREATE_INPUT(
name="ED",
type="proba",
distr="triangle",
param=c(10,50,30)
)
####CREATION OF THE DISTRIBUTIONS ASSOCIATED TO THE PARAMETERS
input=CREATE_DISTR(input)
####VISU INPUT
PLOT_INPUT(input)
#################################################
#### PROPAGATION
#OPTIMZATION CHOICES
choice_opt=NULL #no optimization needed
param_opt=NULL
#PROPAGATION RUN
Z0_IRS<-PROPAG(N=1000,input,FUN,choice_opt,param_opt,mode="IRS")
#################################################
#### POST-PROCESSING
# VISU - PROPAGATION
PLOT_CDF(Z0_IRS,xlab="Z",ylab="CDF",main="EX 1",lwd=1.5)
# interval of quantiles
level=0.95
quant<-QUAN_INTERVAL(Z0_IRS,level)
Qlw<-quant$Qlow
Qup<-quant$Qupp
print(paste("interval of quantiles at level:",level," : ",
"Qlow:",round(Qlw/10^floor(log10(Qlw)),
abs(floor(log10((Qup-Qlw)/10^ceiling(log10(Qlw))))))*10^floor(log10(Qlw)),
" & Qup:",round(Qup/10^floor(log10(Qup)),
abs(floor(log10((Qup-Qlw)/10^ceiling(log10(Qup))))))*10^floor(log10(Qup)),sep="")
)
# interval of probabilities
thres=1e-5
prob<-PROBA_INTERVAL(Z0_IRS,thres)
print(paste("interval of probabilities at threshold:",thres," : ",
"Plow:",prob$Plow,
" & Pup:",round(prob$Pupp,3),sep="")
)
# Global indicator of uncertainty
unc<-UNCERTAINTY(Z0_IRS)
print(paste("Epistemic uncertainty : ",unc,sep=""))
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.