Nothing
##' @title Imputation of missing genotypes in the framework
##' @description Imputation of missing genotypes in the framework
##' @param gmt a dataframe of genotype data of gamete cells in the framework
##' @param nSPT a numeric value of the minumum number of supports
##' for an imputation
##' @param allowNA a numeric value of the maximum number of gametes with
##' NA at a locus
##' @return a dataframe of imputed genotypes in the framework
##' @export
##' @author Ruidong Li
##' @examples
##' ref <- rep(0,500)
##' alt <- rep(1,500)
##'
##' gmtFrame <- data.frame(gmt1=ref, gmt2=alt, gmt3=ref,
##' gmt4=ref, gmt5=c(alt[1:250], ref[251:500]),
##' stringsAsFactors = FALSE)
##'
##' idx1 <- sort(sample(seq_len(500), 30, replace = FALSE))
##' idx2 <- sort(sample(seq_len(500), 30, replace = FALSE))
##' idx3 <- sort(sample(seq_len(500), 30, replace = FALSE))
##'
##' gmtFrame[idx1,1] <- NA
##' gmtFrame[idx2,2] <- NA
##' gmtFrame[idx3,3] <- NA
##' imputedFrame <- hapiImupte(gmtFrame, nSPT=2, allowNA=0)
hapiImupte <- function(gmt, nSPT=2, allowNA=0) {
total <- nrow(gmt)
minNA2 <- 10000000
newNA2 <- sum(apply(gmt, 1, function(y) sum(is.na(y)))>=1)
while (newNA2 < minNA2) {
minNA2 <- newNA2
gmt <- imputationFun1(gmt, nSPT=2)
gmt <- imputationFun2(gmt, nSPT=2)
newNA2 <- sum(apply(gmt, 1, function(y) sum(is.na(y)))>=1)
}
#gmt <- imputationFun3(gmt, nSPT=2)
### filter out failed imputation
filter <- which(apply(gmt, 1, function(y) sum(is.na(y)))>allowNA)
message (paste('Number of hetSNPs after imputation: ',
total-length(filter), sep=''))
if (length(filter)>0) {
gmt <- gmt[-filter,]
return (gmt)
} else {
return(gmt)
}
}
### Determine the allele of imputation (only one) ###
imptDetermineFun <- function(v,nSPT=2) {
if (sum(!is.na(v))==0) {
return (7)
}
v <- v[which(!is.na(v))]
if (length(v) >= nSPT & length(unique(v)) == 1) {
return (unique(v))
} else {
return (7)
}
}
####################################################################
####################### IMPUTATION
naAdjacentFun <- function(gmt) {
nonNAPos <- which(!is.na(gmt))
nonNAPosDiff <- diff(nonNAPos)
nonNAPosLeft <- nonNAPos[which(nonNAPosDiff != 1)]
nonNAPosRight <- nonNAPos[which(nonNAPosDiff != 1)+1]
nonNAMatrix <- cbind(nonNAPosLeft, nonNAPosRight)
return (nonNAMatrix)
}
# two adjacent SNPs both are identical or opposite to those in other pollens #
# supported by at least 2 pollens ###
imputationFun1 <- function(pollens, nSPT=2) {
snpName <- rownames(pollens)
polName <- colnames(pollens)
polNum <- ncol(pollens)
snpNumTotal <- nrow(pollens)
impute.final <- matrix(rep(NA,snpNumTotal*polNum), snpNumTotal, polNum)
dim(impute.final)
minNA <- 10000000
newNA <- sum(apply(pollens, 1, function(y) sum(is.na(y)))>=1)
pols <- 1:polNum
while (newNA < minNA) {
minNA <- newNA
for (k in pols) {
pol.k <- pollens[,k]
nonNAMatrix <- naAdjacentFun(pol.k)
impute.final[,k] <- pol.k
if (nrow(nonNAMatrix) == 0) {
next
} else {
for (i in 1:nrow(nonNAMatrix)) {
l <- nonNAMatrix[i,1]
r <- nonNAMatrix[i,2]
polPart <- pollens[l:r,]
ll <- 1
rr <- nrow(polPart)
snpNum <- rr-ll+1
polPart.k <- polPart[,k]
impute.k <- matrix(rep(NA, snpNum*polNum), snpNum, polNum)
impute.k[,k] <- polPart[,k]
for (j in pols[pols!=k]) {
polPart.j <- polPart[,j]
if (is.na(polPart.j[ll]) | is.na(polPart.j[rr])) {
next
} else if (polPart.k[ll] == polPart.j[ll] &
polPart.k[rr] == polPart.j[rr]) {
impute.k[ll:rr,j] <- polPart.j[ll:rr]
} else if (polPart.k[ll] == flipFun(polPart.j[ll]) &
polPart.k[rr] == flipFun(polPart.j[rr])) {
impute.k[ll:rr,j] <- flipFun(polPart.j[ll:rr])
} else {
next
}
}
#impute.final[l:r,k] <-
#apply(impute.k, 1, function(x) mean(x, na.rm=T))
### only consider the missing data
impute.k <- impute.k[-c(1,nrow(impute.k)),]
impute.k <- matrix(impute.k, ncol=polNum)
if (is.matrix(impute.k)) {
impute.final[(l+1):(r-1),k] <-
apply(impute.k, 1, function(x)
imptDetermineFun(x,nSPT=nSPT))
impute.final[(l+1):(r-1),k][impute.final[(l+1):(r-1),k]==7] <- NA
} else { ### can be deleted
impute.final[(l+1):(r-1),k] <-
imptDetermineFun(impute.k)
impute.final[(l+1):(r-1),k][impute.final[(l+1):(r-1),k]==7] <- NA
}
}
}
}
pollens <- impute.final
newNA <- sum(apply(pollens, 1, function(y) sum(is.na(y)))>=1)
}
rownames(pollens) <- snpName
colnames(pollens) <- polName
return (pollens)
}
##########################################################
multipleNaAdjacentFun <- function(gmt) {
nonNAPos <- which(apply(gmt,1,function(x) sum(is.na(x))) == 0)
nonNAPosDiff <- diff(nonNAPos)
nonNAPosLeft <- nonNAPos[which(nonNAPosDiff != 1)]
nonNAPosRight <- nonNAPos[which(nonNAPosDiff != 1)+1]
nonNAMatrix <- cbind(nonNAPosLeft, nonNAPosRight)
return (nonNAMatrix)
}
### solve missing genotypes in a missing region where ###
### pairwise imputation doesn't work ###
### supported by at least 2 pollens ###
imputationFun2 <- function(pollens, nSPT=2) {
snpName <- rownames(pollens)
polName <- colnames(pollens)
polNum <- ncol(pollens)
pols <- 1:polNum
nonNAMatrix <- multipleNaAdjacentFun(pollens)
if (nrow(nonNAMatrix) == 0) {
return (pollens)
} else {
for (i in 1:nrow(nonNAMatrix)) {
l <- nonNAMatrix[i,1]
r <- nonNAMatrix[i,2]
polPart <- pollens[l:r,]
ll <- 1
rr <- nrow(polPart)
if (sum(is.na(polPart[ll,])) + sum(is.na(polPart[rr,])) != 0) {
next
} else {
snpNum <- rr-ll+1
impute.final <- matrix(rep(NA,snpNum*polNum), snpNum, polNum)
for (k in pols) {
polPart.k <- polPart[,k]
impute.k <- matrix(rep(NA, snpNum*polNum), snpNum, polNum)
impute.k[,k] <- polPart[,k]
for (j in pols[pols!=k]) {
polPart.j <- polPart[,j]
if (polPart.k[ll] == polPart.j[ll] &
polPart.k[rr] == polPart.j[rr]) {
impute.k[ll:rr,j] <- polPart.j[ll:rr]
} else if (polPart.k[ll] == flipFun(polPart.j[ll])
& polPart.k[rr] == flipFun(polPart.j[rr])) {
impute.k[ll:rr,j] <- flipFun(polPart.j[ll:rr])
} else {
next
}
}
#impute.final[,k] <- apply(impute.k, 1,
#function(x) mean(x, na.rm=T))
impute.final[,k] <- apply(impute.k, 1, function(x)
imptDetermineFun(x,nSPT=nSPT))
impute.final[,k][impute.final[,k]==7] <- NA
nonNA.k <- which(!is.na(polPart.k))
impute.final[nonNA.k,k] <- polPart.k[nonNA.k]
}
pollens[l:r,] <- impute.final
}
}
rownames(pollens) <- snpName
colnames(pollens) <- polName
return (pollens)
}
}
### impute missing genotypes in the crossover regions ###
### supported by at least 2 pollens (or more????) ###
imputationFun3 <- function(pollens, nSPT=2) {
snpName <- rownames(pollens)
polName <- colnames(pollens)
polNum <- ncol(pollens)
pols <- 1:polNum
nonNAMatrix <- multipleNaAdjacentFun(pollens)
if (nrow(nonNAMatrix) == 0) {
return (pollens)
} else {
for (i in 1:nrow(nonNAMatrix)) {
l <- nonNAMatrix[i,1]
r <- nonNAMatrix[i,2]
polPart <- pollens[l:r,]
ll <- 1
rr <- nrow(polPart)
if (sum(is.na(polPart[ll,])) + sum(is.na(polPart[rr,])) != 0) {
next
} else {
snpNum <- rr-ll+1
impute.final <- matrix(rep(NA,snpNum*polNum), snpNum, polNum)
for (k in pols) {
polPart.k <- polPart[,k]
impute.k <- matrix(rep(NA, snpNum*polNum), snpNum, polNum)
impute.k[,k] <- polPart[,k]
for (j in pols[pols!=k]) {
polPart.j <- polPart[,j]
### may not be needed ?????????
if (polPart.k[ll] == polPart.j[ll] &
polPart.k[rr] == polPart.j[rr]) {
impute.k[ll:rr,j] <- polPart.j[ll:rr]
} else if (polPart.k[ll] == flipFun(polPart.j[ll]) &
polPart.k[rr] == flipFun(polPart.j[rr])) {
impute.k[ll:rr,j] <- flipFun(polPart.j[ll:rr])
###
} else if (polPart.k[ll] == polPart.j[ll] &
polPart.k[rr] == flipFun(polPart.j[rr])) {
mid <- as.integer((ll+rr)/2)
impute.k[ll:mid,j] <- polPart.j[ll:mid]
impute.k[(mid+1):rr,j] <-
flipFun(polPart.j[(mid+1):rr])
} else if (polPart.k[ll] == flipFun(polPart.j[ll]) &
polPart.k[rr] == polPart.j[rr]) {
mid <- as.integer((ll+rr)/2)
impute.k[ll:mid,j] <- flipFun(polPart.j[ll:mid])
impute.k[(mid+1):rr,j] <- polPart.j[(mid+1):rr]
} else {
next
}
}
#impute.final[,k] <- apply(impute.k, 1,
#function(x) mean(x, na.rm=T))
impute.final[,k] <- apply(impute.k, 1, function(x)
imptDetermineFun(x, nSPT=nSPT))
impute.final[,k][impute.final[,k]==7] <- NA
nonNA.k <- which(!is.na(polPart.k))
impute.final[nonNA.k,k] <- polPart.k[nonNA.k]
}
pollens[l:r,] <- impute.final
}
}
rownames(pollens) <- snpName
colnames(pollens) <- polName
return (pollens)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.