Nothing
# For a variety of sample sizes and distribution of number of ties solve
# for the value of aprob that makes ordGroupBoot(x, aprob=aprob) agree the
# most with ordGroupBoot(x, B=1000)
# Note that output is expected to include an Error
require(rms)
set.seed(1)
d <- NULL
for(i in 1 : 200) { # use 2000 for production run
if(i %% 100 == 0) cat(i, '')
n <- sample(c(rep(20 : 300, 2), 21 : 3000, 1), 1)
x <- runif(n)
r <- sample(1 : 3, 1)
x <- round(runif(n), r)
ap <- sample(c(.9995, .99975, .9999, .99995), 1)
mcandidates <- 7 : min(16, floor(n * 0.4))
ma <- try(ordGroupBoot(x, aprob=ap, m = mcandidates, what='m', pr=FALSE))
mb <- try(ordGroupBoot(x, B=1000, m = mcandidates, what='m', pr=FALSE))
if(inherits(ma, 'try-error')) ma <- NA
if(inherits(mb, 'try-error')) mb <- NA
w <- data.frame(n, r, ap, ma, mb, ad=abs(ma - mb))
d <- rbind(d, w)
}
with(d, table(ad))
mn <- function(x) mean(x, na.rm=TRUE)
with(d, tapply(ad, r, mn))
with(d, tapply(ad, ap, mn))
dd <- datadist(d); options(datadist='dd')
f <- lrm(ad ~ n + r + log(ap), data=d)
f
ggplot(Predict(f))
# Need ma to be >= mb
with(d, tapply(ma >= mb, ap, mn)) # best aprob=0.9999; overshoots by 1.4 on avg.
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.