| get.tau.ci | R Documentation | 
get.tau valuesWrapper to get.tau.bootstrap that takes care of calulating
the confidence intervals based on the bootstrapped values
get.tau.ci(
  posmat,
  fun,
  r = 1,
  r.low = rep(0, length(r)),
  boot.iter = 1000,
  comparison.type = "representative",
  ci.low = 0.025,
  ci.high = 0.975,
  data.frame = TRUE
)
posmat | 
 a matrix appropriate for input to   | 
fun | 
 a function appropriate as input to   | 
r | 
 the series of spatial distances we are interested in  | 
r.low | 
 the low end of each range....0 by default  | 
boot.iter | 
 the number of bootstrap iterations  | 
comparison.type | 
 the comparison type to pass to get.tau  | 
ci.low | 
 the low end of the ci...0.025 by default  | 
ci.high | 
 the high end of the ci...0.975 by default  | 
data.frame | 
 logical indicating whether to return results as a data frame (default = TRUE)  | 
a data frame with the point estimate of tau and its low and high confidence interval at each distance
Justin Lessler and Henrik Salje
Other get.tau: 
get.tau(),
get.tau.bootstrap(),
get.tau.permute(),
get.tau.typed(),
get.tau.typed.bootstrap(),
get.tau.typed.permute()
#compare normally distributed with uniform points
x<-cbind(1,runif(100,-100,100), runif(100,-100,100))
x<-rbind(x, cbind(2,rnorm(100,0,20), rnorm(100,0,20)))
colnames(x) <- c("type","x","y")
fun<-function(a,b) {
     if(a[1]!=2) return(3)
     if (b[1]==2) return(1)
     return(2)
}
r.max<-seq(10,100,10)
r.min<-seq(0,90,10)
r.mid <- (r.max+r.min)/2
tau <- get.tau.ci(x,fun,r=r.max,r.low=r.min,boot.iter=50)
plot(r.mid, tau$pt.est, ylim=c(1/max(tau[,3:5]), max(tau[,3:5])), type="l", log="y",
     xlab="Distance", ylab="Tau")
lines(r.mid, tau$ci.low , lty=2)
lines(r.mid, tau$ci.high, lty=2)
lines(c(0,100),c(1,1), lty=3, col="grey")
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.