| get.theta.ci | R Documentation | 
get.theta values.Wrapper to get.theta.bootstrap that takes care of calculating the
confience intervals based on the bootstrapped values.
get.theta.ci(
  posmat,
  fun,
  r = 1,
  r.low = rep(0, length(r)),
  boot.iter = 1000,
  ci.low = 0.025,
  ci.high = 0.975,
  data.frame = TRUE
)
| posmat | a matrix with columns type, x and y | 
| fun | the function to decide relationships | 
| r | the series of spatial distances we are interested in | 
| r.low | the low end of each range. 0 by default | 
| boot.iter | the number of bootstrap iterations | 
| ci.low | the low end of the ci...0.025 by default | 
| ci.high | the high end of the ci...0.975 by default | 
| data.frame | logical indicating whether to return results as a data frame (default = TRUE) | 
a matrix with a row for the high and low values and a column per distance
Justin Lessler
Other get.theta: 
get.theta(),
get.theta.bootstrap(),
get.theta.permute(),
get.theta.typed(),
get.theta.typed.bootstrap(),
get.theta.typed.permute()
#compare normally distributed with uniform points
x<-cbind(1,runif(100,-100,100), runif(100,-100,100))
x<-rbind(x, cbind(2,rnorm(100,0,20), rnorm(100,0,20)))
colnames(x) <- c("type","x","y")
fun<-function(a,b) {
    if(a[1]!=2) return(3)
    if (b[1]==2) return(1)
    return(2)
}
r.max<-seq(10,100,10)
r.min<-seq(0,90,10)
r.mid <- (r.max+r.min)/2
theta<-get.theta(x,fun,r=r.max,r.low=r.min)
theta.ci<-get.theta.ci(x,fun,r=r.max,r.low=r.min,boot.iter=100)
plot(r.mid, theta$theta, type="l")
lines(r.mid, theta.ci[,2] , lty=2)
lines(r.mid, theta.ci[,3] , lty=2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.