Nothing
#' Derive importance scores for permuted data.
#'
#' MAIN FUNCTION -- > JRF_permutation
#'
#' INPUT
#'
#' X list object containing data for each class
#' ntree number of trees
#' mtry number of variables to be sampled at each node
#' genes.name list of gene names
#' perm seed for permutation
#'
#' OUTPUT: importance score of interactions for permuted data.
#'
#'
#' OTHER FUNCTIONS -- > importance and JRF_onetarget
#'
#' importance compute importance score for an object of class JRF
#' (this file is a modified version of file importance contained in package randomForest, A. Liaw and M. Wiener (2002))
#'
#' JRF_onetarget for each class, model the expression of a target gene as a function of the expression of other genes via random forest.
#' class specific tree ensemble are designed to borrow information across them.
#' (this file is a modified version of file randomForest contained in package randomForest, A. Liaw and M. Wiener (2002))
#'
#'
#' @export
#"JRF_permutation" <- function(X, ...)UseMethod("JRF")
importance <- function(x, scale=TRUE) {
# --- Function importance is a modified version of function importance from R package randomForest
type=NULL;
class=NULL;
if (!inherits(x, "randomForest"))
stop("x is not of class randomForest")
classRF <- x$type != "regression"
hasImp <- !is.null(dim(x$importance)) || ncol(x$importance) == 1
hasType <- !is.null(type)
if (hasType && type == 1 && !hasImp)
stop("That measure has not been computed")
allImp <- is.null(type) && hasImp
if (hasType) {
if (!(type %in% 1:2)) stop("Wrong type specified")
if (type == 2 && !is.null(class))
stop("No class-specific measure for that type")
}
imp <- x$importance
if (hasType && type == 2) {
if (hasImp) imp <- imp[, ncol(imp), drop=FALSE]
} else {
if (scale) {
SD <- x$importanceSD
imp[, -ncol(imp)] <-
imp[, -ncol(imp), drop=FALSE] /
ifelse(SD < .Machine$double.eps, 1, SD)
}
if (!allImp) {
if (is.null(class)) {
## The average decrease in accuracy measure:
imp <- imp[, ncol(imp) - 1, drop=FALSE]
} else {
whichCol <- if (classRF) match(class, colnames(imp)) else 1
if (is.na(whichCol)) stop(paste("Class", class, "not found."))
imp <- imp[, whichCol, drop=FALSE]
}
}
}
imp<-imp[,2]
imp
}
# --- Function JRF_onetarget is a modified version of function randomForest from R package randomForest
"JRF_onetarget" <-
function(x, y=NULL, xtest=NULL, ytest=NULL, ntree,
sampsize,
totsize = if (replace) ncol(x) else ceiling(.632*ncol(x)),
mtry=if (!is.null(y) && !is.factor(y))
max(floor(nrow(x)/3), 1) else floor(sqrt(nrow(x))),
replace=TRUE, classwt=NULL, cutoff, strata,
nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1,
maxnodes=NULL,
importance=FALSE, localImp=FALSE, nPerm=1,
proximity, oob.prox=proximity,
norm.votes=TRUE, do.trace=FALSE,
keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE,
keep.inbag=FALSE, nclasses, ...) {
ww=1/sampsize;
nclass=mylevels=ipi=sw=NULL
addclass <- is.null(y)
classRF <- addclass || is.factor(y)
if (!classRF && length(unique(y)) <= 5) {
warning("The response has five or fewer unique values. Are you sure you want to do regression?")
}
if (classRF && !addclass && length(unique(y)) < 2)
stop("Need at least two classes to do classification.")
n <- ncol(y) # number of samples
p <- nrow(x)/nclasses # number of variables
if (n == 0) stop("data (x) has 0 rows")
x.row.names <- rownames(x)
x.col.names <- if (is.null(colnames(x))) 1:ncol(x) else colnames(x)
keep.forest=!is.null(y)
xtest=NULL; ytest=NULL
testdat <- !is.null(xtest)
if (testdat) {
if (ncol(x) != ncol(xtest))
stop("x and xtest must have same number of columns")
ntest <- nrow(xtest)
xts.row.names <- rownames(xtest)
}
prox <- proxts <- double(1)
## Check for NAs.
if (any(is.na(x))) stop("NA not permitted in predictors")
if (testdat && any(is.na(xtest))) stop("NA not permitted in xtest")
if (any(is.na(y))) stop("NA not permitted in response")
if (!is.null(ytest) && any(is.na(ytest))) stop("NA not permitted in ytest")
if (is.data.frame(x)) {
xlevels <- lapply(x, mylevels)
ncat <- sapply(xlevels, length)
## Treat ordered factors as numerics.
ncat <- ifelse(sapply(x, is.ordered), 1, ncat)
x <- data.matrix(x)
if(testdat) {
if(!is.data.frame(xtest))
stop("xtest must be data frame if x is")
xfactor <- which(sapply(xtest, is.factor))
if (length(xfactor) > 0) {
for (i in xfactor) {
if (any(! levels(xtest[[i]]) %in% xlevels[[i]]))
stop("New factor levels in xtest not present in x")
xtest[[i]] <-
factor(xlevels[[i]][match(xtest[[i]], xlevels[[i]])],
levels=xlevels[[i]])
}
}
xtest <- data.matrix(xtest)
}
} else {
ncat <- rep(1, p)
xlevels <- as.list(rep(0, p))
}
maxcat <- max(ncat)
if (maxcat > 32)
stop("Can not handle categorical predictors with more than 32 categories.")
addclass <- FALSE
proximity <- addclass
impout <- matrix(0.0, p*nclasses, 2)
impSD <- matrix(0.0, p*nclasses, 1)
# names(impSD) <- x.col.names
nsample <- if (addclass) 2 * n else n
Stratify <- length(n) > 1
nodesize=5;
nrnodes <- 2 * trunc(n/max(1, nodesize - 4)) + 1
maxnodes=NULL
if (!is.null(maxnodes)) {
## convert # of terminal nodes to total # of nodes
maxnodes <- 2 * maxnodes - 1
if (maxnodes > nrnodes) warning("maxnodes exceeds its max value.")
nrnodes <- min(c(nrnodes, max(c(maxnodes, 1))))
}
## Compiled code expects variables in rows and observations in columns.
# x <- t(x)
storage.mode(x) <- "double"
xtest <- double(1)
ytest <- double(1)
ntest <- 1
labelts <- FALSE
nt <- if (keep.forest) ntree else 1
nPerm=1
do.trace=F; oob.prox=F
corr.bias=FALSE
keep.inbag=FALSE
impmat <- double(1)
replace=T
if (classRF) {
cwt <- classwt
threshold <- cutoff
error.test <- if (labelts) double((nclass+1) * ntree) else double(1)
####### -- call C function to compute tree ------------------------------------------------------- ###########
rfout <- .C("classRF",
x = x,
xdim = as.integer(c(p, n)),
y = as.integer(y),
nclass = as.integer(nclass),
ncat = as.integer(ncat),
maxcat = as.integer(maxcat),
sampsize = as.integer(sampsize),
strata = if (Stratify) as.integer(strata) else integer(1),
Options = as.integer(c(addclass,
importance,
localImp,
proximity,
oob.prox,
do.trace,
keep.forest,
replace,
Stratify,
keep.inbag)),
ntree = as.integer(ntree),
mtry = as.integer(mtry),
ipi = as.integer(ipi),
classwt = as.double(cwt),
cutoff = as.double(threshold),
nodesize = as.integer(nodesize),
outcl = integer(nsample),
counttr = integer(nclass * nsample),
prox = prox,
impout = impout,
impSD = impSD,
impmat = impmat,
nrnodes = as.integer(nrnodes),
ndbigtree = integer(ntree),
nodestatus = integer(nt * nrnodes),
bestvar = integer(nt * nrnodes),
treemap = integer(nt * 2 * nrnodes),
nodepred = integer(nt * nrnodes),
xbestsplit = double(nt * nrnodes),
errtr = double((nclass+1) * ntree),
testdat = as.integer(testdat),
xts = as.double(xtest),
clts = as.integer(ytest),
nts = as.integer(ntest),
countts = double(nclass * ntest),
outclts = as.integer(numeric(ntest)),
labelts = as.integer(labelts),
proxts = proxts,
errts = error.test,
inbag = if (keep.inbag)
matrix(integer(n * ntree), n) else integer(n), as.double(sw))[-1]
if (keep.forest) {
## deal with the random forest outputs
max.nodes <- max(rfout$ndbigtree)
treemap <- aperm(array(rfout$treemap, dim = c(2, nrnodes, ntree)),
c(2, 1, 3))[1:max.nodes, , , drop=FALSE]
}
if (!addclass) {
## Turn the predicted class into a factor like y.
out.class <- factor(rfout$outcl, levels=1:nclass,
labels=levels(y))
names(out.class) <- x.row.names
con <- table(observed = y,
predicted = out.class)[levels(y), levels(y)]
con <- cbind(con, class.error = 1 - diag(con)/rowSums(con))
}
out.votes <- t(matrix(rfout$counttr, nclass, nsample))[1:n, ]
oob.times <- rowSums(out.votes)
if (norm.votes)
out.votes <- t(apply(out.votes, 1, function(x) x/sum(x)))
dimnames(out.votes) <- list(x.row.names, levels(y))
class(out.votes) <- c(class(out.votes), "votes")
if (testdat) {
out.class.ts <- factor(rfout$outclts, levels=1:nclass,
labels=levels(y))
names(out.class.ts) <- xts.row.names
out.votes.ts <- t(matrix(rfout$countts, nclass, ntest))
dimnames(out.votes.ts) <- list(xts.row.names, levels(y))
if (norm.votes)
out.votes.ts <- t(apply(out.votes.ts, 1,
function(x) x/sum(x)))
class(out.votes.ts) <- c(class(out.votes.ts), "votes")
if (labelts) {
testcon <- table(observed = ytest,
predicted = out.class.ts)[levels(y), levels(y)]
testcon <- cbind(testcon,
class.error = 1 - diag(testcon)/rowSums(testcon))
}
}
cl <- match.call()
cl[[1]] <- as.name("randomForest")
out <- list(call = cl,
type = if (addclass) "unsupervised" else "classification",
predicted = if (addclass) NULL else out.class,
err.rate = if (addclass) NULL else t(matrix(rfout$errtr,
nclass+1, ntree,
dimnames=list(c("OOB", levels(y)), NULL))),
confusion = if (addclass) NULL else con,
votes = out.votes,
oob.times = oob.times,
classes = levels(y),
importance = if (importance)
matrix(rfout$impout, p, nclass+2,
dimnames = list(x.col.names,
c(levels(y), "MeanDecreaseAccuracy",
"MeanDecreaseGini")))
else matrix(rfout$impout, ncol=1,
dimnames=list(x.col.names, "MeanDecreaseGini")),
importanceSD = if (importance)
matrix(rfout$impSD, p, nclass + 1,
dimnames = list(x.col.names,
c(levels(y), "MeanDecreaseAccuracy")))
else NULL,
localImportance = if (localImp)
matrix(rfout$impmat, p, n,
dimnames = list(x.col.names,x.row.names)) else NULL,
proximity = if (proximity) matrix(rfout$prox, n, n,
dimnames = list(x.row.names, x.row.names)) else NULL,
ntree = ntree,
mtry = mtry,
forest = if (!keep.forest) NULL else {
list(ndbigtree = rfout$ndbigtree,
nodestatus = matrix(rfout$nodestatus,
ncol = ntree)[1:max.nodes,, drop=FALSE],
bestvar = matrix(rfout$bestvar, ncol = ntree)[1:max.nodes,, drop=FALSE],
treemap = treemap,
nodepred = matrix(rfout$nodepred,
ncol = ntree)[1:max.nodes,, drop=FALSE],
xbestsplit = matrix(rfout$xbestsplit,
ncol = ntree)[1:max.nodes,, drop=FALSE],
pid = rfout$classwt, cutoff=cutoff, ncat=ncat,
maxcat = maxcat,
nrnodes = max.nodes, ntree = ntree,
nclass = nclass, xlevels=xlevels)
},
y = if (addclass) NULL else y,
test = if(!testdat) NULL else list(
predicted = out.class.ts,
err.rate = if (labelts) t(matrix(rfout$errts, nclass+1,
ntree,
dimnames=list(c("Test", levels(y)), NULL))) else NULL,
confusion = if (labelts) testcon else NULL,
votes = out.votes.ts,
proximity = if(proximity) matrix(rfout$proxts, nrow=ntest,
dimnames = list(xts.row.names, c(xts.row.names,
x.row.names))) else NULL),
inbag = if (keep.inbag) rfout$inbag else NULL)
}
else {
rfout <- .C("regRF",
x,
y, ww,
as.integer(c(totsize, p)),
sampsize=as.integer(sampsize), as.integer(totsize),
as.integer(nodesize),
as.integer(nrnodes),
as.integer(ntree),
as.integer(mtry),
as.integer(c(importance, localImp, nPerm)),
as.integer(ncat),
as.integer(maxcat),
as.integer(do.trace),
as.integer(proximity),
as.integer(oob.prox),
as.integer(corr.bias),
ypred = double(n * nclasses),
impout = impout,
impmat = impmat,
impSD = impSD,
prox = prox,
ndbigtree = integer(ntree),
nodestatus = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
leftDaughter = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
rightDaughter = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
nodepred = matrix(double(nrnodes * nt * nclasses), ncol=nt),
bestvar = matrix(integer(nrnodes * nt * nclasses), ncol=nt),
xbestsplit = matrix(double(nrnodes * nt * nclasses), ncol=nt),
mse = double(ntree * nclasses),
keep = as.integer(c(keep.forest, keep.inbag)),
replace = as.integer(replace),
testdat = as.integer(testdat),
xts = xtest,
ntest = as.integer(ntest),
yts = as.double(ytest),
labelts = as.integer(labelts),
ytestpred = double(ntest),
proxts = proxts,
msets = double(if (labelts) ntree else 1),
coef = double(2),
oob.times = integer(n),
inbag = if (keep.inbag)
matrix(integer(n * ntree), n) else integer(1), as.integer(nclasses))[c(16:28, 36:41)]
# ## Format the forest component, if present.
if (keep.forest) {
max.nodes <- max(rfout$ndbigtree)
rfout$nodestatus <-
rfout$nodestatus[1:max.nodes, , drop=FALSE]
rfout$bestvar <-
rfout$bestvar[1:max.nodes, , drop=FALSE]
rfout$nodepred <-
rfout$nodepred[1:max.nodes, , drop=FALSE]
rfout$xbestsplit <-
rfout$xbestsplit[1:max.nodes, , drop=FALSE]
rfout$leftDaughter <-
rfout$leftDaughter[1:max.nodes, , drop=FALSE]
rfout$rightDaughter <-
rfout$rightDaughter[1:max.nodes, , drop=FALSE]
}
cl <- match.call()
cl[[1]] <- as.name("randomForest")
# ## Make sure those obs. that have not been OOB get NA as prediction.
ypred <- rfout$ypred
if (any(rfout$oob.times < 1)) {
ypred[rfout$oob.times == 0] <- NA
}
out <- list(call = cl,
type = "regression",
predicted =0,
mse = rfout$mse,
rsq = 1 - rfout$mse / (var(y[1,]) * (n-1) / n),
oob.times = rfout$oob.times,
importance = if (importance) matrix(rfout$impout, p * nclasses, 2) else
matrix(rfout$impout, ncol=1),
importanceSD=if (importance) rfout$impSD else NULL,
localImportance = if (localImp)
matrix(rfout$impmat, p, n, dimnames=list(x.col.names,
x.row.names)) else NULL,
proximity = if (proximity) matrix(rfout$prox, n, n,
dimnames = list(x.row.names, x.row.names)) else NULL,
ntree = ntree,
mtry = mtry,
forest = if (keep.forest)
c(rfout[c("ndbigtree", "nodestatus", "leftDaughter",
"rightDaughter", "nodepred", "bestvar",
"xbestsplit")],
list(ncat = ncat), list(nrnodes=max.nodes),
list(ntree=ntree), list(xlevels=xlevels)) else NULL,
coefs = if (corr.bias) rfout$coef else NULL,
y = y,
test = if(testdat) {
list(predicted = structure(rfout$ytestpred,
names=xts.row.names),
mse = if(labelts) rfout$msets else NULL,
rsq = if(labelts) 1 - rfout$msets /
(var(ytest) * (n-1) / n) else NULL,
proximity = if (proximity)
matrix(rfout$proxts / ntree, nrow = ntest,
dimnames = list(xts.row.names,
c(xts.row.names,
x.row.names))) else NULL)
} else NULL,
inbag = if (keep.inbag)
matrix(rfout$inbag, nrow(rfout$inbag),
dimnames=list(x.row.names, NULL)) else NULL)
}
# print(rfout$mse)
class(out) <- "randomForest"
return(out)
}
# --- MAIN function
"JRF_permutation" <-
function(X, ntree,mtry,genes.name,perm) {
nclasses<-length(X)
sampsize<-rep(0,nclasses)
for (j in 1:nclasses) sampsize[j]<-dim(X[[j]])[2]
totsize<-tot<-max(sampsize);
p<-dim(X[[1]])[1];
imp<-array(0,c(p,length(genes.name),nclasses))
imp.final<-matrix(0,p*(p-1)/2,nclasses);
vec1<-matrix(rep(genes.name,p),p,p)
vec2<-t(vec1)
vec1<-vec1[lower.tri(vec1,diag=FALSE)]
vec2<-vec2[lower.tri(vec2,diag=FALSE)]
index<-seq(1,p)
for (j in 1:length(genes.name)){
covar<-matrix(0,(p-1)*nclasses,tot)
y<-matrix(0,nclasses,tot)
set.seed((perm-1)*nclasses+1)
for (c in 1:nclasses) {
y[c,seq(1,sampsize[c])]<-as.matrix(X[[c]][j,sample(sampsize[c])])
covar[seq((c-1)*(p-1)+1,c*(p-1)),seq(1,sampsize[c])]<-X[[c]][-j,]
}
jrf.out<-JRF_onetarget(x=covar,y=y,mtry=mtry,importance=TRUE,sampsize=sampsize,nclasses=nclasses,ntree=ntree)
for (s in 1:nclasses) imp[-j,j,s]<-importance(jrf.out,scale=FALSE)[seq((p-1)*(s-1)+1,(p-1)*(s-1)+p-1)] #- save importance score for net1
}
# --- Derive importance score for each interaction
for (s in 1:nclasses){
imp.s<-imp[,,s]; t.imp<-t(imp.s)
imp.final[,s]<-(imp.s[lower.tri(imp.s,diag=FALSE)]+t.imp[lower.tri(t.imp,diag=FALSE)])/2
}
out<-as.data.frame(imp.final)
colnames(out)<-paste0('importance',1:nclasses)
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.