Nothing
#' @name PPC2
#' @title Apply the PPC method to the Laplace factor model
#' @description This function performs Projected Principal Component Analysis (PPC) on a given data set to reduce dimensionality. It calculates the estimated values for the loadings, specific variances, and the covariance matrix.
#' @param data The total data set to be analyzed.
#' @param m The number of principal components.
#' @return Apro,Dpro,Sigmahatpro
#' @examples
#' library(LaplacesDemon)
#' library(MASS)
#' n=1000
#' p=10
#' m=5
#' mu=t(matrix(rep(runif(p,0,1000),n),p,n))
#' mu0=as.matrix(runif(m,0))
#' sigma0=diag(runif(m,1))
#' F=matrix(mvrnorm(n,mu0,sigma0),nrow=n)
#' A=matrix(runif(p*m,-1,1),nrow=p)
#' lanor <- rlaplace(n*p,0,1)
#' epsilon=matrix(lanor,nrow=n)
#' D=diag(t(epsilon)%*%epsilon)
#' data=mu+F%*%t(A)+epsilon
#' results <- PPC2(data, m)
#' print(results)
#' @export
#' @importFrom matrixcalc frobenius.norm
#' @importFrom stats cov
PPC2=function(data,m){
X=scale(data)
n=nrow(X)
p=ncol(X)
P=as.matrix(diag(c(0,1),n,n))
Xpro=scale(P%*%X)
Sigmahatpro<-cov(Xpro)
eig<-eigen(Sigmahatpro)
lambdahat =eig$values[1:m]
ind<-order(lambdahat,decreasing=T)
lambdahat<-lambdahat[ind]
Q <- eig$vectors
Q<-Q[,ind]
Qhat<-Q[,1:m]
Apro <- matrix(0, nrow = p, ncol = m)
for (j in 1:m) {Apro[, j] <- sqrt(lambdahat[j]) * Qhat[, j]}; Apro
hpro <- diag(Apro %*% t(Apro))
Dpro <- diag(Sigmahatpro - hpro)
return(list(Apro=Apro,Dpro=Dpro,Sigmahatpro=Sigmahatpro))}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.