Nothing
###########################################################################
# CSF #
# #
# The purpose of the CSF function is to provide a visual MCMC diagnostic #
# based on the cumulative sample function (CSF). #
###########################################################################
CSF <- function(x, name, method="Quantiles", quantiles=c(.025,.5,.975),
output=FALSE)
{
if(missing(x)) stop("The x argument is required.")
if(missing(name)) name <- "x"
if(is.constant(x)) stop("x must not be constant.")
if(!is.vector(x)) x <- as.vector(x)
if(method == "ESS") {
y <- rep(0, length(x))
for (i in 1:length(x)) {
test <- try(ESS(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
plot(y, type="l", xlab="Cumulative Sample", ylab="ESS")
if(output == TRUE) return(y)}
if(method == "Geweke.Diagnostic") {
y <- rep(0, length(x))
for (i in 1:length(x)) {
test <- try(Geweke.Diagnostic(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample",
ylab="Geweke Diagnostic")
abline(h=2, lty=2, col="red"); abline(h=-2, lty=2, col="red")
if(output == TRUE) return(y)}
if(method == "HPD") {
Y <- matrix(0, length(x), 2)
for (i in 1:length(x)) {
test <- try(as.vector(p.interval(x[1:i], HPD=TRUE,
MM=FALSE)[1,]), silent=TRUE)
if(!inherits(test, "try-error")) Y[i,] <- test}
plot(x, type="l", col="gray", xlab="Sample Size",
ylab="HPD (95%)")
for (i in 1:2) lines(Y[,i], col="black")
if(output == TRUE) return(Y)}
if(method == "is.stationary") {
y <- rep(FALSE, length(x))
for (i in 1:length(x)) {
test <- try(is.stationary(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample",
ylab="Stationary Indicator")
if(output == TRUE) return(y)}
if(method == "Kurtosis") {
kurtosis <- function(x) {
m4 <- mean((x-mean(x))^4)
kurt <- m4/(sd(x)^4)-3
return(kurt)}
y <- rep(0, length(x))
for (i in 1:length(x)) {
test <- try(kurtosis(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample", ylab="Kurtosis")
if(output == TRUE) return(y)}
if(method == "MCSE") {
y <- rep(1, length(x))
for (i in 1:length(x)) {
test <- try(MCSE(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
y[which(!is.finite(y))] <- 1
y[which(y > 1)] <- 1
plot(y, type="l", xlab="Cumulative Sample", ylab="MCSE")
if(output == TRUE) return(y)}
if(method == "MCSE.bm") {
y <- rep(1, length(x))
for (i in 1:length(x)) {
test <- try(MCSE(x[1:i], method="batch.means"), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
y[which(!is.finite(y))] <- 1
y[which(y > 1)] <- 1
plot(y, type="l", xlab="Cumulative Sample", ylab="MCSE")
if(output == TRUE) return(y)}
if(method == "MCSE.sv") {
y <- rep(1, length(x))
for (i in 1:length(x)) {
test <- try(MCSE(x[1:i], method="sample.variance"),
silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
y[which(!is.finite(y))] <- 1
y[which(y > 1)] <- 1
plot(y, type="l", xlab="Cumulative Sample", ylab="MCSE")
if(output == TRUE) return(y)}
if(method == "Mean") {
y <- rep(0, length(x))
for (i in 1:length(x)) {
test <- try(mean(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample", ylab="Mean")
if(output == TRUE) return(y)}
if(method == "Mode") {
y <- rep(0, length(x))
for (i in 1:length(x)) {
test <- try(Mode(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test[1]}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample", ylab="Mode")
if(output == TRUE) return(y)}
if(method == "N.Modes") {
y <- rep(1, length(x))
for (i in 1:length(x)) {
test <- try(Modes(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- length(test$modes)}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample", ylab="Number of Modes")
if(output == TRUE) return(y)}
if(method == "Precision") {
y <- rep(0, length(x))
for (i in 1:length(x)) {
test <- try(var(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- 1 / test}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample", ylab="Precision")
if(output == TRUE) return(y)}
if(method == "Quantiles") {
Y <- matrix(0, length(x), length(quantiles))
for (i in 1:length(x)) {
test <- try(quantile(x[1:i], probs=quantiles), silent=TRUE)
if(!inherits(test, "try-error")) Y[i,] <- test}
plot(x, type="l", col="gray", xlab="Sample Size", ylab="Quantiles")
for (i in 1:ncol(Y)) lines(Y[,i], col="black")
if(output == TRUE) return(Y)}
if(method == "Skewness") {
skewness <- function(x) {
m3 <- mean((x-mean(x))^3)
skew <- m3/(sd(x)^3)
return(skew)}
y <- rep(0, length(x))
for (i in 1:length(x)) {
test <- try(skewness(x[1:i]), silent=TRUE)
if(!inherits(test, "try-error")) y[i] <- test}
par(mfrow=c(2,1))
plot(1:length(x), x, type="l", xlab="Iterations", ylab=name)
panel.smooth(1:length(x), x, pch="")
plot(y, type="l", xlab="Cumulative Sample", ylab="Skewness")
if(output == TRUE) return(y)}
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.