Nothing
###########################################################################
# ESS #
# #
# The purpose of the ESS function is to estimate the effective sample #
# size (ESS) of a target distribution after taking autocorrelation into #
# account. Although the code is slightly different, it is essentially the #
# same as the effectiveSize function in the coda package. #
###########################################################################
ESS <- function(x)
{
x <- as.matrix(x)
v0 <- order <- rep(0, ncol(x))
names(v0) <- names(order) <- colnames(x)
N <- nrow(x)
z <- 1:N
for (i in 1:ncol(x)) {
lm.out <- lm(x[, i] ~ z)
if(!identical(all.equal(sd(residuals(lm.out)), 0), TRUE)) {
ar.out <- try(ar(x[,i], aic=TRUE), silent=TRUE)
if(!inherits(ar.out, "try-error")) {
v0[i] <- ar.out$var.pred / {1 - sum(ar.out$ar)}^2
order[i] <- ar.out$order}}}
spec <- list(spec=v0, order=order)
spec <- spec$spec
temp <- N * .colVars(x) / spec
out <- spec
out[which(spec != 0)] <- temp[which(spec != 0)]
out[which(out < .Machine$double.eps)] <- .Machine$double.eps
out[which(out > N)] <- N
return(out)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.