Nothing
###########################################################################
# IAT #
# #
# The purpose of the IAT function is to estimate the integrated #
# autocorrelation time of a chain, given its samples. Although the code #
# is slightly different, it is essentially the same as the IAT function #
# in the Rtwalk package, which is currently unavailable on CRAN. #
###########################################################################
IAT <- function(x)
{
if(missing(x)) stop("The x argument is required.")
if(!is.vector(x)) x <- as.vector(x)
dt <- x
n <- length(x)
mu <- mean(dt)
s2 <- var(dt)
### The maximum lag is half the sample size
maxlag <- max(3, floor(n/2))
#### The gammas are sums of two consecutive autocovariances
Ga <- rep(0,2)
Ga[1] <- s2
lg <- 1
Ga[1] <- Ga[1] + sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
m <- 1
lg <- 2*m
Ga[2] <- sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
lg <- 2*m + 1
Ga[2] <- Ga[2] + sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
IAT <- Ga[1]/s2 # Add the autocorrelations
### RULE: while Gamma stays positive and decreasing
while ((Ga[2] > 0.0) & (Ga[2] < Ga[1])) {
m <- m + 1
if(2*m + 1 > maxlag) {
cat("Not enough data, maxlag=", maxlag, "\n")
break}
Ga[1] <- Ga[2]
lg <- 2*m
Ga[2] <- sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
lg <- 2*m + 1
Ga[2] <- Ga[2] + sum((dt[1:(n-lg)]-mu)*(dt[(lg+1):n]-mu)) / n
IAT <- IAT + Ga[1] / s2
}
IAT <- -1 + 2*IAT #Calculates the IAT from the gammas
return(IAT)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.