Nothing
##########################################################
# Section 7.8 Posterior Inferences
##########################################################
library(LearnBayes)
data(hearttransplants)
attach(hearttransplants)
datapar = list(data = hearttransplants, z0 = 0.53)
start=c(2, -7)
fit = laplace(poissgamexch, start, datapar)
fit
par(mfrow = c(1, 1))
mycontour(poissgamexch, c(0, 8, -7.3, -6.6), datapar,
xlab="log alpha",ylab="log mu")
S=readline(prompt="Type <Return> to continue : ")
start = c(4, -7)
fitgibbs = gibbs(poissgamexch, start, 1000, c(1,.15), datapar)
alpha = exp(fitgibbs$par[, 1])
mu = exp(fitgibbs$par[, 2])
shrink=function(i) mean(alpha/(alpha + e[i] * mu))
shrinkage=sapply(1:94, shrink)
S=readline(prompt="Type <Return> to continue : ")
windows()
plot(log(e), shrinkage)
mrate=function(i) mean(rgamma(1000, y[i] + alpha, e[i] + alpha/mu))
hospital=1:94
meanrate=sapply(hospital,mrate)
hospital[meanrate==min(meanrate)]
###########################################################
sim.lambda=function(i) rgamma(1000,y[i]+alpha,e[i]+alpha/mu)
LAM=sapply(1:94,sim.lambda)
compare.rates <- function(x) {
nc <- NCOL(x)
ij <- as.matrix(expand.grid(1:nc, 1:nc))
m <- as.matrix(x[,ij[,1]] > x[,ij[,2]])
matrix(colMeans(m), nc, nc, byrow = TRUE)
}
better=compare.rates(LAM)
better[1:24,85]
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.