Nothing
Tunning_selection_corrected=function(n,tau,grid_h,grid_k,estimated_coef,Y,estimated_Score,Sigma_hat,degree=40,p_z=p_z){
num_h=length(grid_h)
num_k=length(grid_k)
p=dim(estimated_Score)[[2]]+1
W_star=list(NULL)
length(W_star)=20
Z_plus=matrix(0,nrow = n,ncol = p_z)
for(j in 1:20){
W_star[[j]]=estimated_Score+cbind(Z_plus,mvrnorm(n,rep(0,(p-1-p_z)),Sigma_hat))
}
all_parameter=cbind(rep(grid_k,each=num_h),rep(grid_h,times=num_k))
beta_hat_star=as.data.frame(matrix(numeric(0),nrow=p))
for(j in 1:20){
beta_hat_star=cbind(beta_hat_star,apply(all_parameter, MARGIN=1, FUN = Multiple_grid_corrected, Y=Y,estimated_Score=W_star[[j]],Sigma_hat=Sigma_hat,tau=tau,degree=degree,p_z=p_z))
}
mean_star=t(apply(estimated_coef, MARGIN = 1, FUN=rep, times=20))
difference_star=cbind(rep(1:20,each=num_h*num_k),cbind(rep(1:(num_h*num_k),times=20),t(beta_hat_star-mean_star)))
difference_star=difference_star[order(difference_star[,2]),]
M_1=sapply(1:(num_h*num_k), M_fun, da=difference_star[,-(1:2)], num_h=num_h, grid_k=grid_k,p_z=p_z)
W_star2=list(NULL)
length(W_star2)=20
for(j in 1:20){
W_star2[[j]]=W_star[[j]]+cbind(Z_plus,mvrnorm(n,rep(0,(p-1-p_z)),Sigma_hat))
}
beta_hat_star2=as.data.frame(matrix(numeric(0),nrow=p))
for(j in 1:20){
beta_hat_star2=cbind(beta_hat_star2,apply(all_parameter, MARGIN=1, FUN = Multiple_grid_corrected, Y=Y,estimated_Score=W_star2[[j]],Sigma_hat=Sigma_hat,tau=tau,degree=degree,p_z=p_z))
}
difference_star2=cbind(rep(1:20,each=num_h*num_k),cbind(rep(1:(num_h*num_k),times=20),t(beta_hat_star2-beta_hat_star)))
difference_star2=difference_star2[order(difference_star2[,2]),]
M_2=sapply(1:(num_h*num_k), M_fun, da=difference_star2[,-(1:2)], num_h=num_h, grid_k=grid_k,p_z=p_z)
return(list(M_1=M_1,M_2=M_2,beta_hat_star=beta_hat_star,beta_hat_star2=beta_hat_star2))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.