Description Usage Arguments Details Value Author(s) Examples
Summarizes modules into a table.
1 2 3 4 5 | MEGENA.ModuleSummary(MEGENA.output,
mod.pvalue = 0.05,hub.pvalue = 0.05,
min.size = 10,max.size = 2500,
annot.table = NULL,symbol.col = NULL,id.col = NULL,
output.sig = TRUE)
|
MEGENA.output |
A list object. The output from "do.MEGENA()". |
mod.pvalue |
module compactness significance p-value, to identify modules with significant compactness. |
hub.pvalue |
node degree significance p-value to identify nodes with significantly high degree. |
min.size |
minimum module size allowed to finalize in the summary output. |
max.size |
maximum module size allowed to finalize in the summary output. |
annot.table |
Default value is NULL, indicating no mapping is provided between node names to gene symbols. If provided, the mapping between node names (id.col) and gene symbol (symbol.col) are used. |
id.col |
column index of annot.table for node names. |
symbol.col |
column index of annot.table for gene symbols. |
output.sig |
Default value is TRUE, indicating significant modules are outputted. |
output$module.table contains many important information including module hierarchy, as indicated by
A list object with the components:
modules |
Final set of modules obtained upon apply mod.pvalue for significance, min.size and max.size for module size thresholding. |
mapped.modules |
gene symbol mapped modules when "annot.table" is provided. |
module.table |
data.frame object for module summary table. Columns include: id, module.size, module.parent, module.hub, module.scale and module.pvalue. |
Won-Min Song
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | ## Not run:
rm(list = ls())
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output,
mod.pvalue = 0.05,hub.pvalue = 0.05,
min.size = 10,max.size = 5000,
annot.table = NULL,id.col = NULL,symbol.col = NULL,
output.sig = TRUE)
## End(Not run)
|
Loading required package: doParallel
Loading required package: foreach
Loading required package: iterators
Loading required package: parallel
Loading required package: igraph
Attaching package: ‘igraph’
The following objects are masked from ‘package:stats’:
decompose, spectrum
The following object is masked from ‘package:base’:
union
i = 1
i = 2
- outputting correlation results...
####### PFN Calculation commences ########
[1] "PFG is complete."
Commence multiscale clustering....
Calculating distance metric and similarity...
iteration:1
- #. tested:1
- k=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
- #. of split:4
- assess improvements over compactness
iteration:2
- #. tested:4
- k=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
- #. of split:1
- k=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
- #. of split:4
- assess improvements over compactness
- k=2,3,4,5,6,7,
- #. of split:0
- k=2,3,4,5,6,7,8,
- #. of split:0
iteration:3
- #. tested:4
- k=2,3,4,5,6,
- #. of split:0
- k=2,3,4,5,6,7,
- #. of split:0
- k=2,3,4,5,6,7,8,9,10,11,12,13,14,
- #. of split:1
- k=2,3,4,5,6,7,8,9,
- #. of split:0
Commence MHA...
Calculating hub significance.....
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
Identifying similar scales....
- Calculating within-module degree profiles.....
K.max:8
Cluster scales based on degree profiles...
k = 2,3,4,5,6,7,8,
- identified: 3
Identifying hub genes significant in each scale level...
Assigning module/KDA membership
Calculating node topological properties
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.