Description Usage Arguments Details Value Author(s) Examples
A modification of plot_module() function for more general subnetwork plotting purpose.
1 2 3 4 |
module |
A character vector containing gene names to be subsetted. |
hub |
If provided, genes in hub will be highlighted as triangles in resulting figure. |
PFN |
igraph object retaining PFN topology. |
node.default.color |
Default node colors for those that do not intersect with signatures in gene.set. |
gene.set |
A list object containing signatures for customized coloring of nodes in resulting network plot. |
color.code |
A character vector with matched length to "gene.set", to specify colors for each signature. |
show.legend |
TRUE/FALSE for showing node legend on the bottom of the figure. |
label.hubs.only |
TRUE/FALSE to show labels for significant hub genes only, or all genes. Defauly is TRUE. |
hubLabel.col |
Label color for hubs. Default is "red" |
hubLabel.sizeProp |
A multiplicative factor to adjust hub label sizes with respect to node size values. Default is 0.5 |
show.topn.hubs |
Maximal number of hubs to label on module subnetwork. Default is 10. |
node.sizeProp |
A multiplicative factor to adjust node sizes with respect to 90th percentile degree node size. Default is 13 |
label.sizeProp |
A multiplicative factor to adjust node label sizes with respect to 90th percentile degree node size. Default is 13 |
label.scaleFactor |
Overall scale factor to control the final size of node labels appearing in figure. Default is 10. |
layout |
Network layout algorithm to apply. Options are: "kamada.kawai", "fruchterman.reingold". |
Subnetwork plot functionality with application of "ggrepel" package for node labeling. The most effective way to control overall node label size is through label.scaleFactor.
A list object holding ggplot object and node annotation table.
Won-Min Song
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | ## Not run:
rm(list = ls())
library(MEGENA)
data(Sample_Expression)
ijw <- calculate.correlation(datExpr[1:100,],doPerm = 2)
el <- calculate.PFN(ijw[,1:3])
g <- graph.data.frame(el,directed = FALSE)
MEGENA.output <- do.MEGENA(g = g,remove.unsig = FALSE,doPar = FALSE,n.perm = 10)
output.summary <- MEGENA.ModuleSummary(MEGENA.output,
mod.pvalue = 0.05,hub.pvalue = 0.05,
min.size = 10,max.size = 5000,
annot.table = NULL,id.col = NULL,symbol.col = NULL,
output.sig = TRUE)
pnet.obj <- plot_subgraph(module = output.summary$modules[[1]],
hub = c("CD3E","CD2"),PFN = g,node.default.color = "black",
gene.set = NULL,color.code = c("grey"),show.legend = TRUE,
label.hubs.only = TRUE,hubLabel.col = "red",hubLabel.sizeProp = 0.5,
show.topn.hubs = 10,node.sizeProp = 13,label.sizeProp = 13,
label.scaleFactor = 10,layout = "kamada.kawai")
# the plot
pnet.obj[[1]]
# the annotation
pnet.obj[[2]]
## End(Not run)
|
Loading required package: doParallel
Loading required package: foreach
Loading required package: iterators
Loading required package: parallel
Loading required package: igraph
Attaching package: ‘igraph’
The following objects are masked from ‘package:stats’:
decompose, spectrum
The following object is masked from ‘package:base’:
union
i = 1
i = 2
- outputting correlation results...
####### PFN Calculation commences ########
[1] "PFG is complete."
Commence multiscale clustering....
Calculating distance metric and similarity...
iteration:1
- #. tested:1
- k=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
- #. of split:4
- assess improvements over compactness
iteration:2
- #. tested:4
- k=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
- #. of split:1
- k=2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,
- #. of split:4
- assess improvements over compactness
- k=2,3,4,5,6,7,
- #. of split:0
- k=2,3,4,5,6,7,8,
- #. of split:0
iteration:3
- #. tested:3
- k=2,3,4,5,6,
- #. of split:0
- k=2,3,4,5,6,7,
- #. of split:0
- k=2,3,4,5,6,7,8,9,
- #. of split:0
Commence MHA...
Calculating hub significance.....
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
permutation no.:1,2,3,4,5,6,7,8,9,10,
Identifying similar scales....
- Calculating within-module degree profiles.....
K.max:8
Cluster scales based on degree profiles...
k = 2,3,4,5,6,7,8,
- identified: 3
Identifying hub genes significant in each scale level...
Assigning module/KDA membership
Calculating node topological properties
- # of genes: 43
- # of hubs: 2
- generating module subnetwork figure...
node.lab id node.size node.shape X1 X2
CD3E CD3E CD3E 38.505399 hub 1.08196871 0.68793133
CD3D CD3D CD3D 18.598795 gene -0.59820031 1.78460447
CD2 CD2 CD2 37.451167 hub -0.71857815 0.11006972
CXCL11 CXCL11 CXCL11 8.873881 gene -2.80800335 -1.89082777
ITK ITK ITK 19.368649 gene 0.76348184 -1.11081879
ACAP1 ACAP1 ACAP1 15.717805 gene 1.15210236 2.26095347
IL2RG IL2RG IL2RG 18.598795 gene 0.36733038 1.60218017
PTPRCAP PTPRCAP PTPRCAP 11.197591 gene 2.59417336 1.35442226
SLAMF6 SLAMF6 SLAMF6 15.717805 gene 2.24192949 -0.67315919
SH2D1A SH2D1A SH2D1A 16.796386 gene 0.99394723 -0.54646429
SIRPG SIRPG SIRPG 13.000000 gene -1.28293814 1.20820169
CD5 CD5 CD5 11.197591 gene 0.09939443 0.21472777
NKG7 NKG7 NKG7 8.873881 gene 2.25255225 0.53915864
TIGIT TIGIT TIGIT 15.717805 gene -1.97729514 0.44093412
CD96 CD96 CD96 14.472676 gene 0.16917838 -0.91337377
CD247 CD247 CD247 11.197591 gene -1.85510282 1.61603281
CXCR3 CXCR3 CXCR3 14.472676 gene -0.26170585 1.49011281
PTPN7 PTPN7 PTPN7 13.000000 gene 1.82132662 2.09332717
TBC1D10C TBC1D10C TBC1D10C 13.000000 gene 2.42218823 1.83304880
UBASH3A UBASH3A UBASH3A 8.873881 gene -0.38127016 0.90757841
LY9 LY9 LY9 11.197591 gene 1.84689228 -0.80501203
GZMA GZMA GZMA 11.197591 gene 0.77134288 -0.08465634
CD48 CD48 CD48 11.197591 gene 1.09191214 2.60026484
TBX21 TBX21 TBX21 8.873881 gene -2.18598610 1.00502491
CXCL10 CXCL10 CXCL10 13.000000 gene -3.19673967 0.02057735
ICOS ICOS ICOS 11.197591 gene -1.66109807 -0.23938802
CD3G CD3G CD3G 11.197591 gene -0.57709549 -1.72670732
GBP5 GBP5 GBP5 16.796386 gene -2.25683022 -0.58039711
SLAMF1 SLAMF1 SLAMF1 8.873881 gene 1.79028925 -2.24590971
HLA-B HLA-B HLA-B 8.873881 gene -3.41450719 -0.61733258
GIMAP5 GIMAP5 GIMAP5 8.873881 gene 1.57235419 1.58263799
HLA-H HLA-H HLA-H 5.598795 gene -2.88851193 -1.32383245
TMEM176A TMEM176A TMEM176A 8.873881 gene 0.90793077 1.13745597
LCK LCK LCK 11.197591 gene -0.07070277 -0.23816541
ZNF831 ZNF831 ZNF831 8.873881 gene 2.10309341 -1.88143345
SIT1 SIT1 SIT1 8.873881 gene 0.17930021 2.57430663
SLA2 SLA2 SLA2 13.000000 gene -1.46023794 2.01432460
TRAT1 TRAT1 TRAT1 8.873881 gene -0.34060378 -1.45033811
CCL5 CCL5 CCL5 14.472676 gene 0.43121773 0.75318386
GZMK GZMK GZMK 8.873881 gene 2.51778528 0.05452838
ZAP70 ZAP70 ZAP70 8.873881 gene 2.59044179 3.12663638
GPR174 GPR174 GPR174 8.873881 gene 0.46540416 -2.52744789
CXCL9 CXCL9 CXCL9 13.000000 gene -1.78131423 -0.90553579
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.