R/est_multi_glob_genZ.R

Defines functions est_multi_glob_genZ

Documented in est_multi_glob_genZ

est_multi_glob_genZ <- function (Y, X, model = c("m","l","g"), ind = 1:nrow(Y), de = NULL,
	Z = NULL, z = NULL, Dis = NULL, dis = NULL, disp = FALSE, only_sc = FALSE, Int = NULL,
	der_single = FALSE, maxit = 10){
	
# fix matrices of equality and inequality constraints
    nd = dim(X)
    if(length(nd)<3){
    	X = array(X,c(1,nd))	
    	nd = nd[2]
    }else nd = nd[3]
	ncov = dim(X)[2]
	constr = !is.null(Z)
	if(constr){
		if(is.null(z)) z = rep(0,nrow(Z))
	}else{
		Z = diag(ncov); z = rep(0,ncov)
	}
	if(!is.null(Dis)){
		if(is.null(dis)) dis = rep(0, nrow(Dis))
		dis = dis-Dis%*%z; Dis = Dis%*%Z
	}
# Preliminaries
	model = match.arg(model)
    lv = rep(0, nd)
    for (h in 1:nd) lv[h] = sum(!is.na(X[, 1, h])) + 1
    lm = max(lv)
    n = nrow(Y)
    w = rowSums(Y, na.rm = TRUE)
    if (model == "g" || model == "l") {
        out = matr_glob(lm, model)
        Co = out$Co; Ma = out$Ma
    }
    G = rbind(matrix(0,1,lm-1),diag(lm-1))
    if (is.null(de)) {
        dist = colMeans(Y, na.rm = TRUE)
		if(model=="m" || model=="l"){
			if (model == "m") eta = log(dist[-1]/dist[1])
        	if (model == "l") eta = Co %*% log(Ma %*% dist)
        	Xm = matrix(0, dim(X)[1], ncov)
			for (h in 1:nd) Xm[1:(lv[h]-1), ] = Xm[1:(lv[h]-1),] + X[1:(lv[h]-1),,h] * sum(w[ind == h])
        	Xm = matrix(Xm/sum(w), lm - 1, ncov)
        	Zm = Xm%*%Z; zm = Xm%*%z
        	de = ginv(t(Zm) %*% Zm) %*% t(Zm) %*% (eta-zm)
        }
        if (model == "g") {
            YW = Y * w
            num = den = 0
            for (h in 1:nd) {
                Xh = matrix(X[1:(lv[h] - 1), , h], lv[h] - 1, ncov)
                Zh = Xh%*%Z; zh = Xh%*%z                
                indh = ind == h
                if (sum(indh) == 1) dist = YW[indh, 1:lv[h]] + 0.5
                else dist = colSums(YW[indh, 1:lv[h]], na.rm = TRUE) + 0.5
                dist = rep(1, length(dist))
                out = matr_glob(lv[h], model)
                Co = out$Co
                Ma = out$Ma
                eta = Co %*% log(Ma %*% dist)
                num = num + (t(Zh) %*% (eta-zh)) * sum(w[indh])
                den = den + (t(Zh) %*% Zh) * sum(w[indh])
            }
            de = ginv(den) %*% num
        }
    }
    be = Z%*%de+z
    P = matrix(NA, nd, lm)
    for (h in 1:nd) {
        Xh = matrix(X[1:(lv[h] - 1), , h], lv[h] - 1, ncov)
        if (is.null(Int)) x0 = 0
        else x0 = Int[1:(lv[h] - 1), h]
        if (model == "m") {
            P[h, ] = exp(G %*% (x0 + Xh %*% be))
            P[h, ] = P[h, ]/sum(P[h, ])
        }
        if (model == "g" | model == "l") P[h, 1:lv[h]] = inv_glob(x0 + Xh %*% be, model)$p
    }
    if (any(P < 0, na.rm = TRUE)) print("inversion error in P")
    P = pmax(P, 10^-100)
    Pdis = P; P = P[ind, ]
    lk = sum(Y * log(P), na.rm = TRUE)
    lko = lk; it = 0
    flag = TRUE
    if(disp) print(c(0, lk))
	while ((abs(lk - lko) > 10^-6 | it == 0) & it < maxit) {
        it = it + 1
        sc = 0; FI = 0
        if(der_single) Sc = matrix(0, n, ncov)
		for(h in 1:nd){
            indh = which(ind == h)
            p = Pdis[h, 1:lv[h]]
            Xh = matrix(X[1:(lv[h] - 1), , h], lv[h] - 1, ncov)
            if(model == "m") D = t(G %*% Xh)
            if(model == "g" || model == "l"){
                out = matr_glob(lv[h], model)
                Co = out$Co; Ma = out$Ma
                G = rbind(matrix(0, 1, lv[h] - 1), diag(lv[h] - 1))
                ve = 1/as.vector(Ma %*% p)
                D = ginv(Co %*% diag(ve) %*% Ma %*% diag(p) %*% G)
                D = t(G %*% D %*% Xh)
            }
            if(der_single){
                for(i in indh){
                  Sc[i, ] = D %*% (Y[i, ] - w[i] * p)
                  sc = sc + Sc[i, ]
                }
            }else{
                if (length(indh) == 1) tmp = Y[indh, 1:lv[h]]
                else tmp = as.vector(colSums(Y[indh, 1:lv[h]]))
                sc = sc + D %*% (tmp - sum(w[indh]) * p)
            }
            FI = FI + sum(w[indh]) * (D %*% (diag(p) - p %*% t(p)) %*% t(D))
        }
        scde = t(Z)%*%sc; FIde = t(Z)%*%FI%*%Z
        if(der_single) Scde = Sc%*%Z
		if(!only_sc){
            if (rcond(FIde) < 10^-15) {
                if(flag){
					flag = FALSE
					warning("matrix close to singularity in est_multi_glob")
                }
                dde = ginv(FIde)%*%scde
            }else{
            	dde = solve(FIde)%*%scde
            }
            mdde = max(abs(dde))
            if (mdde > 0.25) dde = dde/mdde * 0.25
            if (!is.null(Dis)) {
                LL = chol(FIde)
                dde = lsei(A = LL, B = LL %*% (de + dde), G = Dis, H = dis, verbose = FALSE)$X - de
            }
            de0 = de
            de = de + dde
            be = Z%*%de+z
            P0 = P
            P = matrix(0, nd, lm)
            for (h in 1:nd) {
                if (is.null(Int)) x0 = 0
                else x0 = Int[1:(lv[h] - 1), h]
                if (model == "m"){
                	P[h, ] = exp(G %*% (x0 + X[, , h] %*% be))
                	P[h, ] = P[h, ]/sum(P[h, ])
                }
                if (model == "g" || model == "l") P[h,1:lv[h]]=inv_glob(x0+X[1:(lv[h]-1),,h] %*% be,model)$p
            }
            P = pmax(P, 10^-100)
            Pdis = P
            P = P[ind, ]
            lko = lk
            lk = sum(Y * log(P), na.rm = TRUE)
            if (is.na(lk)) {
                lk = lko
                de = de0
                P = P0
                warning("convergence problemsin est_multi_glob")
            }
            if (disp) print(c(it, lk, lk - lko))
        }
    }
    out = list(be = be, lk = lk, Pdis = Pdis, P = P, sc = sc, FI=FI, de=de, scde=scde, FIde=FIde)
    if(der_single){
    	out$Sc = Sc; out$Scde = Scde
    }
    return(out)

}

Try the MLCIRTwithin package in your browser

Any scripts or data that you put into this service are public.

MLCIRTwithin documentation built on May 30, 2017, 12:52 a.m.