MCMCped | R Documentation |
Markov chain Monte Carlo methods for estimating the joint posterior distribution of a pedigree and the parameters that predict its structure using genetic and non-genetic data. These parameters can be associated with covariates of fecundity such as a sexually selected trait or age, or can be associated with spatial or heritable traits that relate parents to specific offspring. Population size, allele frequencies, allelic dropout rates, and stochastic genotyping error rates can also be simultaneously estimated.
MCMCped(PdP=PdataPed(), GdP=GdataPed(), sP=startPed(), tP=tunePed(), pP=priorPed(), mm.tol=999, nitt = 13000, thin = 10, burnin = 3000, write_postG = FALSE, write_postA=FALSE, write_postP = "MARGINAL", checkP = FALSE, jointP = TRUE, DSapprox=FALSE, verbose=TRUE)
PdP |
optional |
GdP |
optional |
sP |
optional |
tP |
optional |
pP |
optional |
mm.tol |
maximum number of mismatches tollerated |
nitt |
number of MCMC iterations |
thin |
thinning interval of the Markov chain |
burnin |
the number of initial iterations to be discarded |
write_postG |
if |
write_postA |
if |
write_postP |
if |
checkP |
if |
jointP |
if |
DSapprox |
if |
verbose |
if |
beta |
an |
USdam |
an |
USsire |
an |
E1 |
an |
E2 |
an |
G |
list of marginal distributions of true genotypes at each locus |
A |
list of |
P |
either samples from the posterior distribution of the pedigree, or the marginal distribution of parents |
Jarrod Hadfield j.hadfield@ed.ac.uk
Hadfield J.D. et al (2006) Molecular Ecology 15 3715-31
getXlist
data(WarblerP) data(WarblerG) GdP<-GdataPed(WarblerG) var1<-expression(varPed(c("lat", "long"), gender="Male", relational="OFFSPRING")) # paternity is to be modelled as a function of distance # between offspring and male territories res1<-expression(varPed("offspring", restrict=0)) # indivdiuals from the offspring generation are excluded as parents res2<-expression(varPed("terr", gender="Female", relational="OFFSPRING", restrict="==")) # mothers not from the offspring territory are excluded PdP<-PdataPed(formula=list(var1,res1,res2), data=WarblerP, USsire=FALSE) tP<-tunePed(beta=30) model1<-MCMCped(PdP=PdP, GdP=GdP, tP=tP, nitt=300, thin=1, burnin=0) plot(model1$beta)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.