Nothing
#### This is a "translation" of GNU octave's
#### ~/src/octave-3.2.4/scripts/linear-algebra/condest.m
#### and ~/src/octave-3.2.4/scripts/linear-algebra/onenormest.m
#### which have identical copyright and references (see below):
####
##__\begin{copyright clause}______________________________________________
## Copyright (C) 2007, 2008, 2009 Regents of the University of California
##
## This file is part of Octave.
##
## Octave is free software; you can redistribute it and/or modify it
## under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or (at
## your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but
## WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
## General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with Octave; see the file COPYING. If not, see
## <http://www.gnu.org/licenses/>.
## Code originally licensed under
##
## Copyright (c) 2007, Regents of the University of California
## All rights reserved.
##
## Redistribution and use in source and binary forms, with or without
## modification, are permitted provided that the following conditions
## are met:
##
## * Redistributions of source code must retain the above copyright
## notice, this list of conditions and the following disclaimer.
##
## * Redistributions in binary form must reproduce the above
## copyright notice, this list of conditions and the following
## disclaimer in the documentation and/or other materials provided
## with the distribution.
##
## * Neither the name of the University of California, Berkeley nor
## the names of its contributors may be used to endorse or promote
## products derived from this software without specific prior
## written permission.
##
## THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''
## AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
## TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
## PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS AND
## CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
## SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
## LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
## USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
## ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
## OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
## OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
## SUCH DAMAGE.
## Author: Jason Riedy <ejr@cs.berkeley.edu>
## Keywords: linear-algebra norm estimation
## Version: 0.2
##__\end{copyright clause}________________________________________________
condest <- function(A, t = min (n, 5), normA = norm(A, "1"),
silent = FALSE, quiet = TRUE)
{
## Octave has further optional args and "calling sequences"
## may be implement at a later time point
##
if(length(d <- dim(A)) != 2 || (n <- d[1]) != d[2])
stop("'A' must be a square matrix")
luA <- lu(A)
i.n <- seq_len(n)
isSparse <- is(A, "sparseMatrix")
if(isSparse) {
### FIXME: if A is not a Matrix, but already a "CHMfactor" as resulting from
### Cholesky() , then we can procede more efficiently , notably
### because of the solve(A, b, system = ".*") options !
## luA = "sparseLU": slots (L, U, p,q, Dim);
## expand(luA) == list(P, L, U, Q) <----> A = P' L U Q
## where P A == A[p +1,] and A Q' == A[, q +1]
## <==> A^(-1) x = Q' U^-1 L^-1 P x = Q'y
## and A^(-T) x =(Q' U^-1 L^-1 P)' x = P' L^-T U^-T Q x = P'z
q. <- q.i <- luA@q + 1L; q.i[q.i] <- i.n
p. <- p.i <- luA@p + 1L; p.i[p.i] <- i.n
## q.i := inv(q.) & p.i := inv(p.), the inverse permutations
Ut <- t(luA@U)
Lt <- t(luA@L)
f.solve <- function(x) solve(luA@U, solve(luA@L, x[p.,]))[q.i,]
f.solve_t <- function(x) solve(Lt, solve(Ut, x[q.,]))[p.i,]
##Oct [L, U, P, Pc] = lu (A);
##Oct solve = @(x) Pc' * (U \ (L \ (P * x)));
##Oct solve_t = @(x) P' * (L' \ (U' \ (Pc * x)));
} else {
## luA is "denseLU" :
e.A <- expand(luA) ## == list(L, U, P), where A = PLU
p. <- p.i <- luA@perm; p.i[p.i] <- i.n
## p.i := inv(p.), the inverse permutation
Ut <- t(e.A$U)
Lt <- t(e.A$L)
## A = PLU <--> A^{-1} x = U^-1 L^-1 P x
## A^{-T} x = (U^-1 L^-1 P)' x = P' L^-T U^-T x = P'z
f.solve <- function(x) solve(e.A$U, solve(e.A$L, x[p.,]))
f.solve_t <- function(x) solve(Lt, solve(Ut, x))[p.i,]
##Oct [L, U, P] = lu (A);
##Oct solve = @(x) U \ (L \ (P*x));
##Oct solve_t = @(x) P' * (L' \ (U' \ x));
}
n1.res <- ## onenormest (A^{-1}, t=t) -- of course,that's *NOT* what we want
onenormest (A.x = f.solve, At.x = f.solve_t,
t=t, n=n, quiet=quiet, silent=silent)
## [Ainv_norm, v, w] = onenormest (solve, solve_t, n, t);
w <- n1.res[["w"]]
list(est = normA * n1.res[["est"]],
v = w / sum(abs(w))) # sum(|w|) = norm(w, "1")
}
## %!demo
## %! N = 100;
## %! A = randn (N) + eye (N);
## %! condest (A)
## %! [L,U,P] = lu (A);
## %! condest (A, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x)))
## %! condest (@(x) A*x, @(x) A'*x, @(x) U\ (L\ (P*x)), @(x) P'*(L'\ (U'\x)), N)
## %! norm (inv (A), 1) * norm (A, 1)
### Yes, these test bounds are really loose. There's
### enough randomization to trigger odd cases with hilb().
## %!test
## %! N = 6;
## %! A = hilb (N);
## %! cA = condest (A);
## %! cA_test = norm (inv (A), 1) * norm (A, 1);
## %! assert (cA, cA_test, -2^-8);
## %!test
## %! N = 6;
## %! A = hilb (N);
## %! solve = @(x) A\x; solve_t = @(x) A'\x;
## %! cA = condest (A, solve, solve_t);
## %! cA_test = norm (inv (A), 1) * norm (A, 1);
## %! assert (cA, cA_test, -2^-8);
## %!test
## %! N = 6;
## %! A = hilb (N);
## %! apply = @(x) A*x; apply_t = @(x) A'*x;
## %! solve = @(x) A\x; solve_t = @(x) A'\x;
## %! cA = condest (apply, apply_t, solve, solve_t, N);
## %! cA_test = norm (inv (A), 1) * norm (A, 1);
## %! assert (cA, cA_test, -2^-6);
## %!test
## %! N = 12;
## %! A = hilb (N);
## %! [rcondA, v] = condest (A);
## %! x = A*v;
## %! assert (norm(x, inf), 0, eps);
##------------ onenormest ------------------------------------------
onenormest <- function(A, t = min(n, 5),
A.x, At.x, n,
silent = FALSE, quiet = silent,
iter.max = 10, eps = 4* .Machine$double.eps)
{
mi.A <- missing(A)
mi.A.x <- missing(A.x)
mi.At.x <- missing(At.x)
no.A.x <- mi.A.x || !is.function(A.x)
no.At.x <- mi.At.x || !is.function(At.x)
if(mi.A && (no.A.x || no.At.x))
stop("must either specify 'A' or the functions 'A.x' and 'At.x'")
if(!mi.A && (!mi.A.x || !mi.At.x))
warning("when 'A' is specified, 'A.x' and 'At.x' are disregarded")
if(mi.A) {
stopifnot(is.numeric(n), length(n) == 1, n == round(n), n >= 0)
}
else { ## using 'A'
if(length(d <- dim(A)) != 2 || (n <- d[1]) != d[2])
stop("'A' must be a square matrix")
rm(d)
}
stopifnot(is.numeric(t), length(t) == 1, t >= 1,
iter.max >= 1)
## Initial test vectors X.
X <- matrix(runif(n*t), n,t) # X = rand (n, t);
## scale X to have column sums == 1 :
X <- X / rep(colSums(X), each=n)
## Track if a vertex has been visited.
been_there <- logical(n) # zeros (n, 1);
I.t <- diag(nrow = t)
## To check if the estimate has increased.
est_old <- 0
## Normalized vector of signs.
S <- matrix(0, n, t)
for(iter in 1:(iter.max + 1)) {
Y <- if(mi.A) A.x(X) else A %*% X ## is n x t
## Find the initial estimate as the largest A*x.
## [est, imax] = max (sum (abs (Y), 1))
imax <- which.max(cY <- colSums(abs(Y)))
est <- cY[imax]
if (est > est_old || iter == 2)
w <- Y[, imax]
if (iter >= 2 && est < est_old) {
## No improvement, so stop.
est <- est_old
break
}
est_old <- est
S_old <- S
if (iter > iter.max) {
## Gone too far. Stop.
if(!silent) warning(gettextf("not converged in %d iterations",
iter.max), domain = NA)
break
}
S <- sign (Y) ## n x t
## Test if any of S are approximately parallel to previous S
## vectors or current S vectors. If everything is parallel,
## stop. Otherwise, replace any parallel vectors with
## rand{-1,+1}.
partest <- apply(abs(crossprod(S_old, S) - n) < eps*n,
2, any)
if (all(partest)) {
## All the current vectors are parallel to old vectors.
## We've hit a cycle, so stop.
if(!quiet) message("hit a cycle (1) -- stop iterations")
break
}
if (any(partest)) {
## Some vectors are parallel to old ones and are cycling,
## but not all of them. Replace the parallel vectors with
## rand{-1,+1}.
numpar <- sum (partest)
replacements <- matrix(sample(c(-1,1), n*numpar,replace=TRUE),
n, numpar)
S[,partest] <- replacements
}
## Now test for parallel vectors within S.
partest <- apply(crossprod(S) - I.t == n, 2, any)
if (any(partest)) {
numpar <- sum(partest)
replacements <- matrix(sample(c(-1,1), n*numpar,replace=TRUE),
n, numpar)
S[,partest] <- replacements
}
Z <- if(mi.A) At.x(S) else crossprod(A, S) ## -- n x t
## Now find the largest non-previously-visted index per vector.
## h = max(2, abs(Z)) ## -- n x t
h <- pmax.int(2, as(abs(Z),"matrix")); dim(h) <- dim(Z) ## -- n x t
## [mh, mhi] = max (h) : for each column h[,j]:
## mh[j] = max(h[,j]); mhi = argmax(..)
mhi <- apply(h, 2, which.max) ## mh <- h[cbind(mhi,1:t)]
if (iter >= 2 && all(mhi == imax)) {
## (mhi == imax) : in octave this is only true when it's for all()
## Hit a cycle, stop.
if(!quiet) message("hit a cycle (2) -- stop iterations")
break
}
## [h, ind] = sort (h, 'descend'):
r <- apply(h, 2, sort.int, decreasing=TRUE, index.return=TRUE) #-> list
h <- sapply(r, `[[`, "x")
ind <- sapply(r, `[[`, "ix") #-> n x t {each column = permutation of 1:n}
if (t > 1) {
firstind <- ind[1:t]
if (all (been_there[firstind])) {
## Visited all these before, so stop.
break
}
ind <- ind[!been_there[ind]] ##-> now ind is a simple vector
if(length(ind) < t) {
## There aren't enough new vectors, so we're practically
## in a cycle. Stop.
if(!quiet) message("not enough new vecs -- stop iterations")
break
}
}
## Visit the new indices.
X <- matrix(0, n, t)
X[cbind(ind[1:t], 1:t)] <- 1
## for(zz in 1:t) X[ind[zz],zz] <- 1
been_there [ind[1:t]] <- TRUE
} ## for(iter ...)
## The estimate est and vector w are set in the loop above. The
## vector v selects the imax column of A.
v <- integer(n)
v[imax] <- 1L
list(est=est, v=v, w=w, iter=iter)
}## {onenormest}
## %!demo
## %! N = 100;
## %! A = randn(N) + eye(N);
## %! [L,U,P] = lu(A);
## %! nm1inv = onenormest(@(x) U\(L\(P*x)), @(x) P'*(L'\(U'\x)), N, 30)
## %! norm(inv(A), 1)
## %!test
## %! N = 10;
## %! A = ones (N);
## %! [nm1, v1, w1] = onenormest (A);
## %! [nminf, vinf, winf] = onenormest (A', 6);
## %! assert (nm1, N, -2*eps);
## %! assert (nminf, N, -2*eps);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
## %!test
## %! N = 10;
## %! A = ones (N);
## %! [nm1, v1, w1] = onenormest (@(x) A*x, @(x) A'*x, N, 3);
## %! [nminf, vinf, winf] = onenormest (@(x) A'*x, @(x) A*x, N, 3);
## %! assert (nm1, N, -2*eps);
## %! assert (nminf, N, -2*eps);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
## %!test
## %! N = 5;
## %! A = hilb (N);
## %! [nm1, v1, w1] = onenormest (A);
## %! [nminf, vinf, winf] = onenormest (A', 6);
## %! assert (nm1, norm (A, 1), -2*eps);
## %! assert (nminf, norm (A, inf), -2*eps);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
## ## Only likely to be within a factor of 10.
## %!test
## %! N = 100;
## %! A = rand (N);
## %! [nm1, v1, w1] = onenormest (A);
## %! [nminf, vinf, winf] = onenormest (A', 6);
## %! assert (nm1, norm (A, 1), -.1);
## %! assert (nminf, norm (A, inf), -.1);
## %! assert (norm (w1, 1), nm1 * norm (v1, 1), -2*eps)
## %! assert (norm (winf, 1), nminf * norm (vinf, 1), -2*eps)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.