Description Note References See Also Examples
Set parameter useModel = modelANOVA
in the call of
Matrix_eQTL_main
to indicate that the genotype
should be treated as a categorical variable.
By default, the number of ANOVA categories is fixed to be 3.
To set it to a different number (say, 4) use the following command:
options(MatrixEQTL.ANOVA.categories=4)
To check the current settings run:
getOption("MatrixEQTL.ANOVA.categories", 3);
The package website: http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/
See Matrix_eQTL_engine
for reference and sample code.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | library("MatrixEQTL")
# Number of columns (samples)
n = 100;
# Number of covariates
nc = 10;
# Generate the standard deviation of the noise
noise.std = 0.1 + rnorm(n)^2;
# Generate the covariates
cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc);
# Generate the vectors with single genotype and expression variables
snps.mat = floor(runif(n, min = 0, max = 3));
gene.mat = 1 + (snps.mat==1) + cvrt.mat %*% rnorm(nc) + rnorm(n) * noise.std;
# Create 3 SlicedData objects for the analysis
snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) );
gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) );
cvrt1 = SlicedData$new( t(cvrt.mat) );
# name of temporary output file
filename = tempfile();
snps1
gene1
# Call the main analysis function
me = Matrix_eQTL_main(
snps = snps1,
gene = gene1,
cvrt = cvrt1,
output_file_name = filename,
pvOutputThreshold = 1,
useModel = modelANOVA,
errorCovariance = diag(noise.std^2),
verbose = TRUE,
pvalue.hist = FALSE );
# remove the output file
unlink( filename );
# Pull Matrix eQTL results - t-statistic and p-value
fstat = me$all$eqtls$statistic;
pvalue = me$all$eqtls$pvalue;
rez = c( Fstat = fstat, pvalue = pvalue)
# And compare to those from ANOVA in R
{
cat("\n\n Matrix eQTL: \n");
print(rez);
cat("\n R anova(lm()) output: \n")
lmodel = lm( gene.mat ~ cvrt.mat + factor(snps.mat), weights = 1/noise.std^2);
lmout = anova(lmodel)[2, c("F value", "Pr(>F)")];
print( lmout )
}
# Results from Matrix eQTL and "lm" must agree
stopifnot(all.equal(lmout, rez, check.attributes = FALSE));
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.