modelLINEAR: Constant for 'Matrix_eQTL_engine'.

Description References See Also Examples

Description

Set parameter useModel = modelLINEAR in the call of Matrix_eQTL_main to indicate that the effect of genotype on expression should be assumed to be additive linear.

References

The package website: http://www.bios.unc.edu/research/genomic_software/Matrix_eQTL/

See Also

See Matrix_eQTL_engine for reference and sample code.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
library('MatrixEQTL')    

# Number of columns (samples)
n = 100;

# Number of covariates
nc = 10;

# Generate the standard deviation of the noise
noise.std = 0.1 + rnorm(n)^2;

# Generate the covariates
cvrt.mat = 2 + matrix(rnorm(n*nc), ncol = nc);

# Generate the vectors with genotype and expression variables
snps.mat = cvrt.mat %*% rnorm(nc) + rnorm(n);
gene.mat = cvrt.mat %*% rnorm(nc) + rnorm(n) * noise.std + 0.5 * snps.mat + 1;

# Create 3 SlicedData objects for the analysis
snps1 = SlicedData$new( matrix( snps.mat, nrow = 1 ) );
gene1 = SlicedData$new( matrix( gene.mat, nrow = 1 ) );
cvrt1 = SlicedData$new( t(cvrt.mat) );

# name of temporary output file
filename = tempfile();

# Call the main analysis function
me = Matrix_eQTL_main(
    snps = snps1, 
    gene = gene1, 
    cvrt = cvrt1, 
    output_file_name = filename, 
    pvOutputThreshold = 1, 
    useModel = modelLINEAR, 
    errorCovariance = diag(noise.std^2), 
    verbose = TRUE,
    pvalue.hist = FALSE );
# remove the output file
unlink( filename );

# Pull Matrix eQTL results - t-statistic and p-value
beta = me$all$eqtls$beta;
tstat = me$all$eqtls$statistic;
pvalue = me$all$eqtls$pvalue;
rez = c(beta = beta, tstat = tstat, pvalue = pvalue)
# And compare to those from the linear regression in R
{
    cat('\n\n Matrix eQTL: \n'); 
    print(rez);
    cat('\n R summary(lm()) output: \n');
    lmodel = lm( gene.mat ~ snps.mat + cvrt.mat, weights = 1/noise.std^2 );
    lmout = summary(lmodel)$coefficients[2, c("Estimate", "t value", "Pr(>|t|)")];
    print( lmout )
}

# Results from Matrix eQTL and 'lm' must agree
stopifnot(all.equal(lmout, rez, check.attributes = FALSE));

MatrixEQTL documentation built on Dec. 22, 2019, 5:06 p.m.