Nothing
convert.graph <-
function(dframe,mapsize,dispersal)
{
distxy <- pairdist(dframe[,2:3])
diag(distxy) <- NA
dist_m <- min(distxy, na.rm=TRUE)
disp <- dispersal
ma <- mean(dframe[, 4])
SD.area <- sd(dframe[, 4])
np <- nrow(dframe)
distxy2 <- as.data.frame(distxy)
names(distxy2) <- dframe[, 1]
rownames(distxy2) <- dframe[, 1]
dist_n <- distxy2
A <- dframe[, 4]
radius <- sqrt((A * 10000) / pi)
grouping <- hclust(dist(dframe[, 2:3], method = "euclidean"), "single")
clusters <- cutree(grouping, h=disp)
rg2 <- cbind(dframe, clusters)
col1 <- rainbow(max(rg2[, "clusters"]))
col2 <- as.data.frame(col1)
col2[, 2] <- seq(1:max(rg2[, 6]))
col3 <- merge_order(rg2, col2, by.x = "clusters", by.y = "V2", sort=FALSE,
keep_order=TRUE)
col5 <- nndist (col3[, 3:4])
species_data <- col3[,6:(ncol(col3)-1)]
df1 <- data.frame(x = col3[, 3], y = col3[, 4], areas = col3[, 5], radius,
cluster = col3[, 1], colour = col3[, 7], nneighbour = col5,
ID = col3[, 2], species_data)
name <- rep("species", ncol(df1) - 8)
name[-1] <- paste(name[-1], 1:(length(name)-1), sep="")
names(df1)[-1:-8] <- name
result <- list(mapsize = mapsize, minimum.distance = dist_m, mean.area = ma,
SD.area = SD.area, number.patches = np,dispersal = dispersal,
distance.to.neighbours = dist_n, nodes.characteristics = df1)
class(result) <- "metapopulation"
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.