Nothing
estep1 <-
function(Y, Tau, Pi, mu, W, Sig, g, p, reset)
{
logTau<-Tau
for(i in 1:g)
{
if(g==1)
{
Tau<-matrix(rep(1,nrow(Y)))
}else{
Tau[,i]<-(dmvnorm(Y, mu[,i], W[,,i]%*%t(W[,,i])+ Sig*diag(p)))*Pi[i]
logTau[,i]<-(dmvnorm(Y, mu[,i], W[,,i]%*%t(W[,,i])+ Sig*diag(p), log=TRUE)) + log(Pi[i])
}
}
Tau[,i][Tau[,i]==Inf] <- 1
Tau[,i][Tau[,i]==-Inf] <- 0
Tau<-Tau/apply(Tau,1,sum)
## In case the posterior probability of membership (Tau) is NA due to some computational problems
## then assign the observation into the group in which it has highest log of Tau.
if(sum(is.na(Tau)) != 0)
{
reset<-TRUE
temp<-apply(apply(Tau,1,is.na), 2, sum)
ind<-c(1:nrow(Y))[temp != 0]
Tau[ind,]<-rep(0,g)
for(j in 1:length(ind))
{
Tau[ind[j], c(1:g)[logTau[ind[j],]==max(logTau[ind[j],])]]<-1
} #j
}
list(Tau, logTau, reset)
} # End e-step1
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.