R/RemoveFactorsByANOVA.R

Defines functions RemoveFactorsByANOVA

Documented in RemoveFactorsByANOVA

#' @title RemoveFactorsByANOVA.
#' @description \code{RemoveFactorsByANOVA} will remove variance from data using an ANOVA model.
#' @details See examples.
#' @param y Data vector (or data matrix) to normalize (numeric + in same order as sam).
#' @param sam data.frame containing the factors or numerical vars for ANOVA model.
#' @param fmod Full model describing the experimental setting (provided as character string).
#' @param kmod Reduced model describing all the biological factors to keep (provided as character string).
#' @param output Should be \code{y_norm} in general but can be switched for testing.
#' @param remove_outliers Should be a numeric integer x (with $x=0$ : no effect; $x>=1$ remove all values which have error e with $e > abs(mean + x * sd)$ ).
#' @return Depends on \code{output}. Usually the normalized data vector (or matrix).
#' @examples
#' # set up sample information
#' sam <- data.frame(
#'   "GT" = gl(4, 10),
#'   "TR" = rep(gl(2, 5), 4),
#'   "Batch" = sample(gl(2, 20)),
#'   "Order" = sample(seq(-1, 1, length.out = 40))
#' )
#'
#' # set up artificial measurement data
#' set.seed(1)
#' # specify main effects
#' m1 <- c(5, 6, 2, 9)[sam$GT] + c(-2, 2)[sam$TR]
#' m2 <- c(5, -6, 2, 4)[sam$GT] + c(-2, 2)[sam$TR]
#' # add run order bias and noise
#' m1 <- m1 + c(-3, 3)[sam$Batch] + 3 * sam$Order + rnorm(nrow(sam), sd = 0.5)
#' m2 <- m2 - 5 * sam$Order + rnorm(nrow(sam), sd = 0.8)
#' dat <- data.frame(m1, m2)
#'
#' # apply function to remove variance
#' # full model incorporating all relevant factors defined in sample table
#' fmod <- "GT*TR+Batch+Order"
#' # reduced model: factors to be kept from full model; everything elso will be removed from the data
#' kmod <- "GT*TR"
#' RemoveFactorsByANOVA(y = dat[, "m1"], sam = sam, fmod = fmod, kmod = kmod, output = "anova_y")
#' RemoveFactorsByANOVA(y = dat[, "m1"], sam = sam, fmod = fmod, kmod = kmod, output = "anova_y_norm")
#' @importFrom utils flush.console
#' @importFrom stats residuals coef model.matrix as.formula anova lm
#' @importFrom graphics par
#' @export
RemoveFactorsByANOVA <- function(y = NULL, sam = NULL, fmod = NULL, kmod = NULL, output = c("y_norm", "y_lm", "anova_y", "anova_y_norm", "boxplot")[1], remove_outliers = 0) {
  # Helper function
  print_info <- function(x, labove = 1, lbelow = 2, pdate = TRUE) {
    stopifnot(is.character(x) && length(x) == 1)
    cat(paste(paste(rep("\n", labove), collapse = ""), ifelse(pdate, date(), ""), "\n", x, paste(rep("\n", lbelow), collapse = ""), sep = ""))
    flush.console()
  }
  facs <- strsplit(paste("y", fmod, sep = " ~ "), "[~+*: ]")[[1]]
  facs <- facs[!(facs %in% c("", "0", "y"))]
  keep <- strsplit(paste("y", kmod, sep = " ~ "), "[~+*: ]")[[1]]
  keep <- keep[!(keep %in% c("", "0", "y"))]
  fmod <- as.formula(paste("y", fmod, sep = " ~ "))
  if (length(keep) == 0) {
    keep <- NULL
    kmod <- NULL
  } else {
    kmod <- as.formula(paste("y", kmod, sep = " ~ "))
  }
  stopifnot(length(facs) >= 1)
  if (!is.null(keep) && !all(keep %in% facs)) {
    warning(paste("Factor(s) defined in 'kmod' need to be additionally specified in 'fmod' to give consistent ordering:", paste(keep[!(keep %in% facs)], collapse = ", ")))
    stopifnot(all(keep %in% facs))
  }
  if (!all(facs %in% colnames(sam))) {
    warning(paste("Factor(s) undefined in 'sam':", paste(facs[!(facs %in% colnames(sam))], collapse = ", ")))
    facs <- facs[facs %in% colnames(sam)]
    stopifnot(length(facs) >= 1)
  }
  # initialize error counters
  count_unchanged <- 0
  count_outfiltfail <- 0
  outer_envir <- environment()
  # if y is vector, convert into data.frame before using apply and ensure rownames are present
  ydf <- as.data.frame(y)
  if (is.null(rownames(ydf))) rownames(ydf) <- 1:nrow(ydf)
  # apply normalization column wise
  out <- sapply(1:ncol(ydf), function(j) {
    tdf <- data.frame("y" = ydf[, j], sam[, facs, drop = F], row.names = rownames(ydf)) # set up dataframe for anova
    # check for incomplete sub groups (in case of more than 1 true factor) and return non-normalized values + warning
    true_fac_cols <- which(sapply(colnames(tdf), function(i) {
      is.factor(tdf[, i])
    }))
    # [ToDo] check if test is correct for incomplete levels
    if (length(true_fac_cols) >= 1 && any(sapply(split(tdf[, "y"], interaction(tdf[, true_fac_cols], drop = TRUE)), function(x) {
      sum(is.finite(unlist(x))) == 0
    }))) {
      # try to identify metabolite name for warning message
      incomplete_levels <- paste(names(which(sapply(split(tdf[, "y"], interaction(tdf[, true_fac_cols], drop = FALSE)), function(x) {
        sum(is.finite(unlist(x))) == 0
      }))), collapse = "; ")
      print_info(paste("ANOVA Modell inapropriate. Return", colnames(ydf)[j], "without normalization. Incomplete levels:", incomplete_levels), 0, 0, F)
      yn <- ydf[, j]
      assign("count_unchanged", value = get("count_unchanged", envir = outer_envir) + 1, envir = outer_envir)
    } else {
      y.lm <- lm(fmod, data = tdf) # set up anova model
      re <- residuals(y.lm) # residuals
      # outlier removal
      if (is.numeric(remove_outliers) && length(remove_outliers) == 1 && remove_outliers > 0) {
        f <- abs(re - mean(re)) > remove_outliers * sd(re) # table(f)
        if (any(f)) {
          # if outliers are to be removed -- is model still valid? (i.e. no empty levels)
          f <- which(!is.na(tdf[, "y"]))[f]
          if (length(true_fac_cols) >= 1 && any(sapply(split(tdf[-f, "y"], interaction(tdf[-f, true_fac_cols], drop = TRUE)), function(x) {
            sum(is.finite(unlist(x))) == 0
          }))) {
            print_info(paste("ANOVA Modell inapropriate after outlier removal. Skip this step for", colnames(ydf)[j], "."), 0, 0, F)
            assign("count_outfiltfail", value = get("count_outfiltfail", envir = outer_envir) + 1, envir = outer_envir)
          } else {
            tdf[f, "y"] <- NA
            y.lm <- lm(fmod, data = tdf) # set up anova model
            re <- residuals(y.lm) # residuals
          }
        }
      } else {
        f <- rep(T, nrow(tdf))
      }
      ce <- coef(y.lm) # these are the coefficients of the individual factors
      if (any(is.na(ce))) {
        ce[is.na(ce)] <- 0
        warning("Some coefficients were NA and had to be set to 0.\nYou probably have nested factors or to few degrees of freedom for your model. Please check.")
      }
      yn <- tdf[, "y"]
      names(yn) <- rownames(tdf) # this maintaines any names y might have had
      fi <- is.finite(yn) # this preserves the NAs in y by restoring only the finite values
      if (is.null(kmod)) { # if no biological factors were specified
        tm <- rep(ce[1], nrow(tdf)) # this is the total mean
        yn[fi] <- tm[fi] + re
      } else {
        kmmat <- model.matrix(kmod, data = tdf)
        # if (length(yn)==nrow(kmmat)) yn[fi] <- (kmmat %*% ce[colnames(kmmat)])[fi] + re
        if (length(yn[fi]) == nrow(kmmat)) yn[fi] <- (kmmat %*% ce[colnames(kmmat)]) + re else warning("check dimensions of 'kmmat'")
      }
      # correct for the offset
      yn[fi] <- yn[fi] + (mean(ydf[fi, j]) - mean(yn[fi]))
    }
    if (output == "y_lm") print(y.lm)
    if (output == "anova_y") print(stats::anova(y.lm))
    if (output == "anova_y_norm") {
      tdf <- data.frame(y = yn, sam[, facs])
      print(stats::anova(lm(fmod, data = tdf)))
    }
    if (output == "boxplot") {
      graphics::par(mfrow = c(1, 2))
      ylm <- range(c(ydf[, j], yn), na.rm = T)
      ylb <- colnames(ydf)[j]
      if (is.null(keep)) {
        true_fac_cols <- which(colnames(sam) %in% facs[which(sapply(facs, function(i) {
          is.factor(sam[, i])
        }))])
      } else {
        true_fac_cols <- which(colnames(sam) %in% keep[which(sapply(keep, function(i) {
          is.factor(sam[, i])
        }))])
      }
      if (length(true_fac_cols) >= 2) tmp.x <- interaction(sam[, true_fac_cols], sep = "_", drop = T) else tmp.x <- sam[, true_fac_cols]
      graphics::plot(ydf[, j] ~ tmp.x, ylim = ylm, xlab = paste("Full:", paste(facs, collapse = ", ")), ylab = ylb, las = 1)
      if (remove_outliers & length(f >= 1)) graphics::points(ydf[f, j] ~ tmp.x[f], col = 2)
      graphics::plot(yn ~ tmp.x, ylim = ylm, xlab = paste("Keep:", paste(keep, collapse = ", ")), ylab = paste(ylb, "norm", sep = "_"), las = 1)
      graphics::par(mfrow = c(1, 1))
    }
    return(yn)
  })
  if (output == "y_norm") {
    if (is.vector(y)) {
      out <- as.vector(unlist(out))
      if (!is.null(names(y))) names(out) <- names(y)
    } else {
      colnames(out) <- colnames(ydf)
    }
  } else {
    out <- NULL
  }
  if (count_unchanged >= 1) print_info(paste("In total", count_unchanged, "metabolites were returned unchanged."), 1, 1, F)
  if (count_outfiltfail >= 1) print_info(paste("In total", count_outfiltfail, "metabolites were not filtered for outliers."), 1, 1, F)
  invisible(out)
}

Try the MetabolomicsBasics package in your browser

Any scripts or data that you put into this service are public.

MetabolomicsBasics documentation built on May 29, 2024, 9:02 a.m.