Nothing
# AIC = -2 * LL + 2 * n
# LL = -1/2 * log(dev) * n + C
# AIC = log(dev) * n + C + 2 * n
.get.nobs <- function(llik, error = FALSE) {
no <- attr(llik, "nall")
if(is.null(no)) no <- attr(llik, "nobs")
if (error && is.null(no)) stop("'logLik' object must have a \"nobs\" attribute")
no
}
.aic <- function(objectlist, chat, k, REML, ICFun, ICName) {
if(chat < 1) {
warning("'chat' given is < 1, increased to 1")
chat <- 1
}
npar.adj <- if(chat == 1) 0 else 1
llCall <- call("logLik", as.name("object"))
if(!is.null(REML)) llCall$REML <- REML
ll <- function(object) fixLogLik(NA, object)
body(ll)[[2L]] <- llCall
if(length(objectlist) > 1L) {
lls <- lapply(objectlist, ll)
val <- data.frame(df = vapply(lls, attr, 1, "df"),
ic = sapply(lls, ICFun, chat = chat, k = k, npar.adj = npar.adj))
Call <- match.call(sys.function(sys.parent()), call = sys.call(sys.parent()))
Call$chat <- Call$REML <- Call$k <- NULL
dimnames(val) <- list(as.character(Call[-1L]), c("df", ICName))
return(val)
} else {
return(ICFun(ll(objectlist[[1L]]), chat = chat, k = k, npar.adj = npar.adj))
}
}
`QAICc` <-
function(object, ..., chat, k = 2, REML = NULL) {
.aic(list(object, ...), chat, k, REML, function(ll, chat, k, npar.adj) {
no <- .get.nobs(ll, error = FALSE)
# df is the number of parameters plus 1 for estimating c-hat
df <- attr(ll, "df") + npar.adj
#neg2ll <- log(deviance(object)) * n # + Constant...
neg2ll <- -2 * c(ll)
ret <- (neg2ll / chat) + (k * df) * (1 + ((df + 1) / (no - df - 1)))
return (ret)
}, "QAICc")
}
`QAIC` <-
function(object, ..., chat, k = 2, REML = NULL) {
.aic(list(object, ...), chat, k, REML, function(ll, chat, k, npar.adj) {
df <- attr(ll, "df") + npar.adj
neg2ll <- -2 * c(ll)
#ret <- (neg2ll * no / chat) + k * df
#ret <- -2 * ll / chat + k * df
ret <- neg2ll / chat + k * df
return (ret)
}, "QAIC")
}
`AICc` <-
function(object, ..., k = 2, REML = NULL) {
.aic(list(object, ...), 1, k, REML, function(ll, chat, k, npar.adj) {
no <- .get.nobs(ll, error = FALSE)
df <- attr(ll, "df")
ret <- (-2 * c(ll)) + (k * df) * (1 + ((df + 1) / (no - df - 1)))
return (ret)
}, "AICc")
}
#QAIC = -2log Likelihood/c-hat + 2K
#QAICc = -2log Likelihood/c-hat + 2K + 2K(K + 1)/(n - K - 1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.