R/par.avg.R

Defines functions `par.avg`

`par.avg` <-
function(x, se, weight, df = NULL, level = 1 - alpha, alpha = 0.05,
	revised.var = TRUE, adjusted = TRUE) {

	if (!(is.numeric(x) && is.numeric(se) && is.numeric(weight)))
		stop("'x', 'se' and 'weight' must be numeric vectors")
	n <- length(x)
	if(length(weight) != n || length(se) != n)
		stop("'x', 'se' and 'weight' are not of the same length: ",
			 sprintf("x: %d, weight: %d, se: %d", n, length(weight),
			 length(se)))

	weight[is.na(weight)] <- 0 # not really necessary

	wx <- weighted.mean(x, weight, na.rm = TRUE)
	x.sqdiff <- (x - wx)^2
	xvar <- se^2

	do.ase <- adjusted && !(missing(df) || is.null(df) || anyNA(df[!is.na(x)]))
	
	# Note: pdistr(qdistr(x)) == x

	a <- 1 - ((1 - level) / 2)
	if(do.ase) {
		z <- c(qt(a, df) / qnorm(a))^2
		i <- is.na(df) & !is.na(x)
		if (length(i) > 0L) z[i] <- 0
	}

	if(revised.var) {
		# Unconditional sqrt-Variance, revised in B&A2004
		use <- sqrt(weighted.mean(xvar + x.sqdiff, weight, na.rm = TRUE))
		if (do.ase)
			# Adjusted std. error - formula modified  by analogy to the previous
			ase <- sqrt(weighted.mean((xvar * z) + x.sqdiff, weight, na.rm = TRUE))
	} else {
		# Unconditional sqrt-Variance, original formula (B&A2002, eqn 4.7)
		use <- weighted.mean(sqrt(xvar + x.sqdiff), weight, na.rm = TRUE)
		if (do.ase)
			# Adjusted std. error (B&A2002, ch.4.3.3/p164):
			ase <- weighted.mean(sqrt((xvar * z) + x.sqdiff), weight, na.rm = TRUE)
	}

	ci <- qnorm(a, lower.tail = TRUE) * (if (do.ase) ase else use)

	return(c(`Coefficient` = wx, `SE` = use,
			 `Adjusted SE` = if(do.ase) ase else NA,
			 `Lower CI` = wx - ci, `Upper CI` = wx + ci))
}

Try the MuMIn package in your browser

Any scripts or data that you put into this service are public.

MuMIn documentation built on Sept. 1, 2022, 1:08 a.m.