Nothing
###
# Example of model selection with models from 'unmarked' package
# with parallel execution
###
require(parallel) || require(snow)
library(MuMIn)
library(unmarked)
# Set up the cluster
ncores <- if(exists("detectCores", mode = "function"))
detectCores() else getOption("cl.cores", 2)
clusterType <- if(length(find.package("snow", quiet = TRUE))) "SOCK" else "PSOCK"
clust <- try(makeCluster(getOption("cl.cores", 2), type = clusterType))
if(!inherits(clust, "cluster")) stop("Could not set up the cluster")
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,
obsCovs = mallard.obs)
# Fit the global model
(ufm.mallard <- pcount(~ ivel + date + I(date^2) ~ length + elev + forest,
mallardUMF, K = 30))
invisible(clusterEvalQ(clust, library(unmarked, logical = TRUE)))
clusterExport(clust, "mallardUMF")
# For comparison, single-threaded run:
#system.time(print(pdd1 <- pdredge(ufm.mallard,
# subset = `p(date)` | !`p(I(date^2))`, rank = AIC)))
system.time(pdd2 <-
dredge(ufm.mallard, cluster = clust,
subset = (`p(date)` || !`p(I(date^2))`),
rank = AIC, extra = "adjR^2", eval = TRUE))
# select the top models and null model
subset(pdd2, delta < 2 | df == min(df))
# Remove the warnings permanently
attr(pdd2, "warnings") <- NULL
# Compare with the model selection table from 'unmarked'.
# The statistics should be identical:
models <- get.models(pdd2, delta < 2 | df == min(df), cluster = clust)
modSel(fitList(fits = structure(models, names = model.names(models,
labels = getAllTerms(ufm.mallard)))), nullmod = "(Null)")
stopCluster(clust)
########################
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.