Nothing
BinaryLogBiplotMirt <- function(x, dimens = 2, tolerance = 1e-04, maxiter = 30, penalization=0.2, Rotation = "varimax", ...){
# joint algorithm for logistic biplots
n <- nrow(x)
p <- ncol(x)
print("Calculating Row Coordinates - MIRT")
mod2 <- mirt(x,dimens, ...)
a <- fscores(mod2,method = "EAP", rotate=Rotation, full.scores = TRUE)
# # Centering the coordinates
# med=apply(a,2,mean)
# a = a - matrix(1,n,1) %*% matrix(med, 1, dimens)
print(" ")
print("Calculating Column Coordinates - Logistic Regression")
Res=list()
Res$Biplot="Binary Logistic"
Res$RowCoordinates=a
Res$ColumnParameters=matrix(0,p,dimens+1)
Res$NullDeviances=matrix(0,p,1)
Res$ModelDeviances=matrix(0,p,1)
Res$Deviances=matrix(0,p,1)
Res$Dfs=matrix(0,p,1)
Res$pvalues=matrix(0,p,1)
Res$Bonferroni=matrix(0,p,1)
Res$Nagelkerke=matrix(0,p,1)
Res$R2=matrix(0,p,1)
Res$PercentsCorrec=matrix(0,p,1)
Res$DevianceTotal=0
Res$p=1
Res$TotalPercent=0
Res$SSRes=matrix(0,p,1)
Res$SSTot=matrix(0,p,1)
for (i in 1:p){
cat(paste(" ",i))
y=x[,i]
fit=RidgeBinaryLogistic(y,a,tolerance = tolerance, maxiter = maxiter, penalization=penalization, cte=TRUE)
Res$ColumnParameters[i,]=t(fit$beta)
Res$ModelDeviances[i]=fit$Deviance
Res$NullDeviances[i]=fit$NullDeviance
Res$Deviances[i]=fit$Dif
Res$Dfs[i]=fit$df
Res$pvalues[i]=fit$p
Res$Bonferroni[i]=(fit$p * p)* ((fit$p * p)<=1) + (((fit$p * p)>1))
Res$R2[i]=fit$R2
Res$CoxSnell[i]=fit$CoxSnell
Res$Nagelkerke[i]=fit$Nagelkerke
Res$MacFaden[i]=fit$MacFaden
Res$PercentsCorrec[i]=fit$PercentCorrect
Res$TotalPercent=Res$TotalPercent+sum(y==fit$Prediction)
Res$SSRes[i]=fit$SSRes
Res$SSTot[i]=fit$SSTot
}
d = sqrt(rowSums(cbind(1,Res$ColumnParameters[, 2:(dimens + 1)])^2))
Res$Loadings = solve(diag(d)) %*% Res$ColumnParameters[, 2:(dimens + 1)]
Res$Tresholds = Res$ColumnParameters[, 1]/d
Res$Communalities = rowSums(Res$Loadings^2)
rownames(Res$ColumnParameters)=colnames(x)
colnames(Res$ColumnParameters)=c("Const.",paste("Dim",1:dimens, sep=""))
rownames(Res$ColumnParameters)=colnames(x)
Res$TotalPercent=Res$TotalPercent/(n*p)
Res$ModelDevianceTotal=sum(Res$ModelDeviances)
Res$NullDevianceTotal=sum(Res$NullDeviances)
Res$DevianceTotal=sum(Res$Deviances)
Res$TotalSSRes=sum(Res$SSRes)
Res$TotalSSTot=sum(Res$SSTot)
nn=length(x)
Res$TotCoxSnell=1-exp(-1*Res$DevianceTotal/nn)
Res$TotNagelkerke=Res$TotCoxSnell/(1-exp((Res$NullDevianceTotal/(-2)))^(2/nn))
Res$TotMacFaden=1-(Res$ModelDevianceTotal/Res$NullDevianceTotal)
Res$TotR2=1-(Res$TotalSSRes=sum(Res$SSRes)/Res$TotalSSTot)
Res$TotalDf=sum(Res$Dfs)
Res$p=1-pchisq(Res$DevianceTotal, df = Res$TotalDf)
Res$ClusterType="us"
Res$Clusters = as.factor(matrix(1,nrow(Res$RowCoordinates), 1))
Res$ClusterColors="blue"
Res$ClusterNames="ClusterTotal"
class(Res) = "Binary.Logistic.Biplot"
return(Res)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.