Nothing
#' @title PipeOpmissMDA_PCA_MCA_FMAD
#'
#' @name PipeOpmissMDA_PCA_MCA_FMAD
#'
#' @description
#' Implements PCA, MCA, FMAD methods as mlr3 pipeline, more about methods \code{\link{missMDA_FMAD_MCA_PCA}}.
#'
#' @section Input and Output Channels:
#' Input and output channels are inherited from \code{\link{PipeOpImpute}}.
#'
#'
#' @section Parameters:
#' The parameters include inherited from [`PipeOpImpute`], as well as: \cr
#' \itemize{
#' \item \code{id} :: \code{character(1)}\cr
#' Identifier of resulting object, default \code{"imput_missMDA_MCA_PCA_FMAD"}.
#' \item \code{optimize_ncp} :: \code{logical(1)}\cr
#' If TRUE, parameter \emph{number of dimensions}, used to predict the missing values, will be optimized. If FALSE, by default ncp=2 is used, default \code{TRUE}.
#' \item \code{set_ncp} :: \code{integer(1)}\cr
#' integer >0. Number of dimensions used by algortims. Used only if optimize_ncp = Flase, default \code{2}.
#' \item \code{ncp.max} :: \code{integer(1)}\cr
#' Number corresponding to the maximum number of components to test when optimize_ncp=TRUE, default \code{5}.
#' \item \code{random.seed} :: \code{integer(1)}\cr
#' Integer, by default random.seed = NULL implies that missing values are initially imputed by the mean of each variable. Other values leads to a random initialization, default \code{NULL}.
#' \item \code{maxiter} :: \code{integer(1)}\cr
#' Maximal number of iteration in algorithm, default \code{998}.
#' \item \code{coeff.ridge} :: \code{double(1)}\cr
#' Value used in \emph{Regularized} method, default \code{1}.
#' \item \code{threshold} :: \code{double(1)}\cr
#' Threshold for convergence, default \code{1e-6}.
#' \item \code{method} :: \code{character(1)}\cr
#' Method used in imputation algorithm, default \code{'Regularized'}.
#' \item \code{out_fill} :: \code{character(1)}\cr
#' Output log file location. If file already exists log message will be added. If NULL no log will be produced, default \code{NULL}.
#' }
#'
#' @examples
#' \donttest{
#'
#' # Using debug learner for example purpose
#'
#'
#' graph <- PipeOpMissMDA_PCA_MCA_FMAD$new() %>>% LearnerClassifDebug$new()
#' graph_learner <- GraphLearner$new(graph)
#'
#' # Task with NA
#' set.seed(1)
#' resample(tsk("pima"), graph_learner, rsmp("cv", folds = 3))
#' }
#' @export
PipeOpMissMDA_PCA_MCA_FMAD <- R6::R6Class("missMDA_MCA_PCA_FMAD_imputation",
lock_objects = FALSE,
inherit = PipeOpImpute, # inherit from PipeOp
public = list(
initialize = function(id = "impute_missMDA_MCA_PCA_FMAD_B", optimize_ncp = TRUE, set_ncp = 2, ncp.max = 5, random.seed = NULL, maxiter = 998,
coeff.ridge = 1, threshold = 1e-06, method = "Regularized", out_file = NULL) {
super$initialize(id,
whole_task_dependent = TRUE, packages = "NADIA", param_vals = list(
optimize_ncp = optimize_ncp, set_ncp = set_ncp, ncp.max = ncp.max, random.seed = random.seed,
maxiter = maxiter, coeff.ridge = coeff.ridge, threshold = threshold, method = method, out_file = out_file),
param_set = ParamSet$new(list(
"set_ncp" = ParamInt$new("set_ncp", lower = 1, upper = Inf, default = 2, tags = "PCA_MCA_FMAD"),
"ncp.max" = ParamInt$new("ncp.max", lower = 1, upper = Inf, default = 2, tags = "PCA_MCA_FMAD"),
"maxiter" = ParamInt$new("maxiter", lower = 50, upper = Inf, default = 998, tags = "PCA_MCA_FMAD"),
"coeff.ridge" = ParamDbl$new("coeff.ridge", lower = 0, upper = 1, default = 1, tags = "PCA_MCA_FMAD"),
"threshold" = ParamDbl$new("threshold", lower = 0, upper = 1, default = 1e-6, tags = "PCA_MCA_FMAD"),
"method" = ParamFct$new("method", levels = c("Regularized", "EM"), default = "Regularized", tags = "PCA_MCA_FMAD"),
"out_file" = ParamUty$new("out_file", default = NULL, tags = "PCA_MCA_FMAD"),
"random.seed" = ParamUty$new("random.seed", default = NULL, tags = "PCA_MCA_FMAD"),
"optimize_ncp" = ParamLgl$new("optimize_ncp", default = TRUE, tags = "PCA_MCA_FMAD")
))
)
self$imputed <- FALSE
self$column_counter <- NULL
self$data_imputed <- NULL
}), private = list(
.train_imputer = function(feature, type, context) {
imp_function <- function(data_to_impute) {
data_to_impute <- as.data.frame(data_to_impute)
# prepering arguments for function
col_type <- 1:ncol(data_to_impute)
for (i in col_type) {
col_type[i] <- class(data_to_impute[, i])
}
percent_of_missing <- 1:ncol(data_to_impute)
for (i in percent_of_missing) {
percent_of_missing[i] <- (sum(is.na(data_to_impute[, i])) / length(data_to_impute[, 1])) * 100
}
col_miss <- colnames(data_to_impute)[percent_of_missing > 0]
col_no_miss <- colnames(data_to_impute)[percent_of_missing == 0]
data_imputed <- NADIA::missMDA_FMAD_MCA_PCA(data_to_impute, col_type, percent_of_missing,
optimize_ncp = self$param_set$values$optimize_ncp,
set_ncp = self$param_set$values$set_ncp,
ncp.max = self$param_set$values$ncp.max, random.seed = self$param_set$values$random.seed,
maxiter = self$param_set$values$maxiter, coeff.ridge = self$param_set$values$coeff.ridge,
threshold = self$param_set$values$threshold, method = self$param_set$values$method,
out_file = self$param_set$values$out_file)
return(data_imputed)
}
self$imputed_predict <- TRUE
self$flag <- "train"
if (!self$imputed) {
self$column_counter <- ncol(context) + 1
self$imputed <- TRUE
data_to_impute <- cbind(feature, context)
self$data_imputed <- imp_function(data_to_impute)
colnames(self$data_imputed) <- self$state$context_cols
}
if (self$imputed) {
self$column_counter <- self$column_counter - 1
}
if (self$column_counter == 0) {
self$imputed <- FALSE
}
self$train_s <- TRUE
self$action <- 3
return(list("data_imputed" = self$data_imputed, "train_s" = self$train_s, "flag" = self$flag, "imputed_predict" = self$imputed_predict, "imputed" = self$imputed, "column_counter" = self$column_counter))
},
.impute = function(feature, type, model, context) {
if (is.null(self$action)) {
self$train_s <- TRUE
self$flag <- "train"
self$imputed_predict <- TRUE
self$action <- 3
self$data_imputed <- model$data_imputed
self$imputed <- FALSE
self$column_counter <- 0
}
imp_function <- function(data_to_impute) {
data_to_impute <- as.data.frame(data_to_impute)
# prepering arguments for function
col_type <- 1:ncol(data_to_impute)
for (i in col_type) {
col_type[i] <- class(data_to_impute[, i])
}
percent_of_missing <- 1:ncol(data_to_impute)
for (i in percent_of_missing) {
percent_of_missing[i] <- (sum(is.na(data_to_impute[, i])) / length(data_to_impute[, 1])) * 100
}
col_miss <- colnames(data_to_impute)[percent_of_missing > 0]
col_no_miss <- colnames(data_to_impute)[percent_of_missing == 0]
data_imputed <- NADIA::missMDA_FMAD_MCA_PCA(data_to_impute, col_type, percent_of_missing,
optimize_ncp = self$param_set$values$optimize_ncp,
set_ncp = self$param_set$values$set_ncp,
ncp.max = self$param_set$values$ncp.max, random.seed = self$param_set$values$random.seed,
maxiter = self$param_set$values$maxiter, coeff.ridge = self$param_set$values$coeff.ridge,
threshold = self$param_set$values$threshold, method = self$param_set$values$method,
out_file = self$param_set$values$out_file)
return(data_imputed)
}
if (self$imputed) {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
}
if ((nrow(self$data_imputed) != nrow(context) | !self$train_s) & self$flag == "train") {
self$imputed_predict <- FALSE
self$flag <- "predict"
}
if (!self$imputed_predict) {
data_to_impute <- cbind(feature, context)
self$data_imputed <- imp_function(data_to_impute)
colnames(self$data_imputed)[1] <- setdiff(self$state$context_cols, colnames(context))
self$imputed_predict <- TRUE
}
if (self$imputed_predict & self$flag == "predict") {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
}
if (self$column_counter == 0 & self$flag == "train") {
feature <- self$data_imputed[, setdiff(colnames(self$data_imputed), colnames(context))]
self$flag <- "predict"
self$imputed_predict <- FALSE
}
self$train_s <- FALSE
return(feature)
}
)
)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.