| mbetattest | R Documentation | 
This function is used to peform multiple beta t-test method on real count data. The result lists "geneid" or "isoformid", gene name, the other information, t-value, p-value, rho, and w.
mbetattest(X, nci, na, nb, alpha=0.05, norm="no", side="both", level="sgRNA",padjust_methods,C=1.222)
| X | count data of RNA sequence reads with na replicates in condition A and nb replicates in condition B. | 
| nci | nonnegative int value: number of columns for data information, such as geneID, isoformID, gene name etc. | 
| na | nonnegative int value: number of replicate libraries in condition A. | 
| nb | int numeric value: number of replicate libraries in condition B. | 
| alpha | float numeric value, a probabilistic threshold. The value must be in [0,1]. User can set alpha=0.05 or 0.01 or the other values. Defalt value is 0.05 | 
| norm | logistic value:"yes" or "no". If norm="yes", the count data will be normalized and mbetattest will work on the normalized data, if norm="no", then mbetattest will work on the unnormalized data. | 
| side | string for specifying tail(s) of t-distribution. If side="up", then p-value is given with t-test in the left tail. If side="down", p-value is given with t-test in right tail. If side ="both", p-value is given with t-test in both sides. | 
| level | string for specifying which level mbetattest work on. In the current version, level has 6 options: "isoform", "sgRNA", "RNA", "splicing.gene","polyA.gene", and "CRISPR.gene". | 
| padjust_methods | string for specifying a method for a multiple procedure. padjust_methods can choose one of "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", TX, and "none" where "fdr" = "BH", "TX" is Tan and Xu's method (2015) with C=1.222 for adjusting p-value. | 
| C | float numeric value for specifying a multiple procedure. C=0 tells mbetattest to perform single tests, C=1.222 tells mbetattest to perform BH correction of pvalues, C>1000 tells mbetattest to perform Bonferroni correction of pvalues. | 
see MBttest2-manual.
return a data and result list: data columns, t-values, rho.
Yuan-De Tan tanyuande@gmail.com
Baggerly KA, Deng L, Morris JS, Aldaz CM (2003) 
Differential expression in SAGE:  accounting for 
normal between-library variation. 
Bioinformatics 19: 1477-1483.	
Benjamini, Y., and Hochberg, Y. (1995). Controlling the false discovery 
rate: a practical and powerful approach to multiple testing. 
Journal of the Royal Statistical Society Series, B, 575, 289-300. 
doi:10.1111/j.2517-6161.1995.tb02031.x,
https://www.jstor.org/stable/2346101.	
Benjamini, Y., and Yekutieli, D. (2001). The control of the false 
discovery rate in multiple testing under dependency. 
Annals of Statistics, 29, 1165 -1188. 
doi:10.1214/aos/1013699998.
Tan YD, Xu H. A general method for accurate estimation of false discovery 
rates in identification of differentially expressed genes. 
Bioinformatics. 2014 Jul 15;30(14):2018-25. 
doi:10.1093/bioinformatics/btu124. Epub 2014 Mar 14. PMID: 24632499.
smbetattest, mtpvadjust, 
normalized,omega.
data(jkttcell) res<-mbetattest(X=jkttcell[1:70, ], nci=7, na=3, nb=3, alpha=0.05, norm="yes", side="both", level="isoform",padjust_methods="fdr",C=0)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.