Description Usage Arguments Details Fields and Methods References See Also Examples
Package: NSA
Class NSANormalization
Object
~~|
~~+--
NSANormalization
Directly known subclasses:
public static class NSANormalization
extends Object
This class represents the NSA normalization method [1], which looks for normal regions within the tumoral samples.
1 | NSANormalization(data=NULL, tags="*", ...)
|
data |
A named |
tags |
Tags added to the output data sets. |
... |
Not used. |
...
Methods:
findArraysTodo | - | |
getDataSets | - | |
getFullName | - | |
getName | - | |
getOutputDataSets | - | |
getPath | - | |
getRootPath | - | |
getTags | - | |
nbrOfFiles | - | |
process | Finds normal regions within tumoral samples. | |
setTags | - | |
Methods inherited from Object:
asThis, $, $<-, [[, [[<-, as.character, attach, attachLocally, clearCache, clone, detach, equals, extend, finalize, gc, getEnvironment, getFields, getInstantiationTime, getStaticInstance, hasField, hashCode, ll, load, objectSize, print, registerFinalizer, save
[1] ...
Low-level versions of the NSA normalization method is available
via the NSAByTotalAndFracB.matrix
() methods.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | ## Not run:
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# CRMAv2 - Preprocess raw Affymetrix data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
library("aroma.affymetrix"); # Needed for CRMAv2
#library("calmate");
library(MASS)
source("F:/MOrtiz/curro/Aroma/calmate/R/CalMaTeNormalization.R")
source("F:/MOrtiz/curro/Aroma/calmate/R/calmateByTotalAndFracB.R")
source("F:/MOrtiz/curro/Aroma/calmate/R/calmateByThetaAB.R")
source("F:/MOrtiz/curro/Aroma/calmate/R/fitCalMaTe.R")
source("F:/MOrtiz/curro/Aroma/calmate/R/fitCalMaTeCNprobes.R")
source("F:/MOrtiz/curro/Aroma/calmate/R/thetaAB2TotalAndFracB.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/NSANormalization.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/NSAByTotalAndFracB.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/fitNSA.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/SNPsNormalization.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/SNPsNByTotalAndFracB.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/fitSNPsN.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/SampleNormalization.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/SampleNByTotalAndFracB.R")
source("F:/MOrtiz/curro/Aroma/NSA/R/fitSample.R")
library("DNAcopy");
setwd("I:/aroma")
dataSet <- "breast cancer";
dataSet <- "GSE12702-prostateCancerPaired"
dataSet <- "GSE12702-prostateCancer"
dataSet <- "GSE14996,testSet"
chipType <- "Mapping250K_Nsp";
#chipType <- "GenomeWideSNP_6"
dsList <- doCRMAv2(dataSet, chipType=chipType, combineAlleles=FALSE,
plm="RmaCnPlm", verbose=-10);
print(dsList);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# CalMaTe - Post-normalization of ASCNs estimates
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
asn <- CalMaTeNormalization(dsList);
print(asn);
# For speed issues, we will here only process loci on Chromosome 17.
chr <- 22;
ugp <- getAromaUgpFile(dsList$total);
units <- getUnitsOnChromosome(ugp, chr);
dsNList <- process(asn, units=units, verbose=verbose);
#dsNList <- process(asn, references = seq(2,40,2), verbose=verbose);
#dsNList <- process(asn, verbose=verbose);
print(dsNList);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# NSA - Finding normal regions
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
asnN <- NSANormalization(dsNList);
print(asnN);
dsNNList <- process(asnN, verbose=verbose);
print(dsNNList);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# NSA - SNPs Normalization
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
asnNsnps <- SNPsNormalization(dsNList);
print(asnNsnps);
dsNNListSNPs <- process(asnNsnps, references = dsNNList, verbose=verbose);
print(dsNNListSNPs);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# NSA - Sample Normalization
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
asnNsample <- SampleNormalization(dsNNListSNPs);
print(asnNsample);
dsNNListSample <- process(asnNsample, references = dsNNList, verbose=verbose);
print(dsNNListSample);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# NSA - SNPs Normalization
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
asnNsnps <- SNPsNormalization(dsNNListSample);
print(asnNsnps);
dsListSNPs <- process(asnNsnps, references = dsNNList, verbose=verbose);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# NSA - Sample Normalization
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
asnNsample <- SampleNormalization(dsListSNPs);
print(asnNsample);
dsListSample <- process(asnNsample, references = dsNNList, verbose=verbose);
print(dsNNListSample);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# CalMaTe - sigma delta validation (for CRMAv2)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Alt 1: Calculate CN ratios where the reference is a pool of specific references samples
references <- c(1:20);
dsR <- extract(dsList$total, references);
dfR <- getAverageFile(dsR);
cnm <- CopyNumberChromosomalModel(dsList$total, dfR);
# Alt 2: Calculate CN ratios where the reference is the pool of all samples
cnm <- CopyNumberChromosomalModel(dsList$total);
print(cnm);
# Extract CN ratios - C=theta/thetaR
cn <- extractRawCopyNumbers(cnm, array=ii, chromosome=chr, logBase=NULL);
cn$y <- 2*cn$y;
print(cn);
# As a data frame
#data <- as.data.frame(cn);
# Estimate std dev (via first-order variance estimator)
sigma <- estimateStandardDeviation(cn);
print(sigma);
# Plot
x11();plot(cn, ylim=c(0,6));
sigmaStr <- sprintf("%.3f", sigma);
stext(side=3, pos=0.5, line=-1, substitute(hat(sigma)[Delta]==x, list(x=sigmaStr)));
# Smooth (bins of 1.0Mb)
cnS <- binnedSmoothing(cn, by=1.0e6);
print(cnS);
points(cnS, col="red");
lines(cnS, col="red");
# Segmentation
fit <- segmentByCBS(cn);
cnr <- extractCopyNumberRegions(fit);
print(cnr);
drawLevels(cnr, col="blue", lwd=3);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# CalMaTe - sigma delta validation (for CalMaTe)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Alt 1: Calculate CN ratios where the reference is a pool of specific references samples
references <- c(1:24)
# Alt 2: Calculate CN ratios where the reference is the pool of all samples
#cnm <- CopyNumberChromosomalModel(dsNNListSample$total);
#cnm <- CopyNumberChromosomalModel(dsNList$total);
#print(cnm);
# Extract CN ratios - C=theta/thetaR
#cn <- extractRawCopyNumbers(cnm, array=ii, chromosome=chr, logBase=NULL);
dataNSA <- extractMatrix(dsNList$total,units = units);
cnNSA <- cn;
cnNSA$y <- dataNSA[,ii];
cn <- cnNSA;
# As a data frame
data <- as.data.frame(cn);
# Estimate std dev (via first-order variance estimator)
sigma <- estimateStandardDeviation(cn);
print(sigma);
# Plot
x11();plot(cn, ylim=c(0,6));
sigmaStr <- sprintf("%.3f", sigma);
stext(side=3, pos=0.5, line=-1, substitute(hat(sigma)[Delta]==x, list(x=sigmaStr)));
# Smooth (bins of 1.0Mb)
cnS <- binnedSmoothing(cn, by=1.0e6);
print(cnS);
points(cnS, col="red");
lines(cnS, col="red");
# Segmentation
fit <- segmentByCBS(cn);
cnr <- extractCopyNumberRegions(fit);
print(cnr);
drawLevels(cnr, col="blue", lwd=3);
#You can obtain the above 'cn' manually as:
dsR <- extract(dsList$total, references);
dfR <- getAverageFile(dsR);
df <- getFile(dsList$total, ii);
theta <- extractRawCopyNumbers(df, chromosome=chr);
print(theta);
thetaR <- extractRawCopyNumbers(dfR, chromosome=chr);
print(thetaR);
cn <- clone(theta);
cn <- divideBy(cn, thetaR);
cn$y <- 2*cn$y;
#sigma delta
mad(diff(cn$y))
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Calculating the differences between CN and SNP probes
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
cnCNP <- RawCopyNumbers(...);
cnSNP <- RawCopyNumbers(...);
xRange <- range(xRange(cnCNP), xRange(cnSNP));
by <- 50e3; # 50kb bins; you may want to try with other amounts of smoothing xOut <- seq(from=xRange[1], to=xRange[2], by=by);
cnCNPS <- binnedSmoothing(cnCNP, xOut=xOut); cnSNPS <- binnedSmoothing(cnSNP, xOut=xOut);
Clim <- c(0,5);
plot(cnCNPS, ylim=Clim);
points(cnSNPS, col="blue");
plot(getSignals(cnCNPS), getSignals(cnSNPS), xlim=Clim, ylim=Clim); abline(a=0, b=1, col="red", lwd=2);
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Plot allele B fractions (before and after calmate)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Sample #1 and Chromosome 17
ii <- 1;
chr <- 17;
df <- getFile(dsList$fracB, ii);
dfN <- getFile(dsNList$fracB, ii);
beta <- extractRawAlleleBFractions(df, chromosome=chr);
betaN <- extractRawAlleleBFractions(dfN, chromosome=chr);
x11();
subplots(2, ncol=1);
plot(beta);
title(sprintf("%s", getName(beta)));
plot(betaN);
title(sprintf("%s (CalMaTe)", getName(betaN)));
for(ii in 1:24){
df <- getFile(dsList$total, ii);
CN <- extractRawCopyNumbers(df, chromosome=chr);
if(ii == 1){
aux <- CN$y;
}else{
aux <- aux + CN$y;
}
}
ref <- aux/24;
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Plot copy numbers (before and after calmate)
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Sample #1 and Chromosome 17
ii <- 3;
chr <- 1;
df <- getFile(dsList$total, ii);
#dfN <- getFile(dsNList$total, ii);
#units <- getUnitsOnChromosome(gi, ii);
#pos <- getPositions(gi, units = units);
#units <- units[order(pos)];
CN <- extractRawCopyNumbers(df, chromosome=chr);
#CNN <- extractRawCopyNumbers(dfN, chromosome=chr);
#CNN <- extractMatrix(dsNList$total, units = units);
#CNN <- CNN[,ii];
x11();
subplots(2, ncol=1);
plot(CN$x, log2(CN$y));
title(sprintf("%s", getName(CN)));
plot(CNN);
title(sprintf("%s (CalMaTe)", getName(CNN)));
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Plot Normal Regions
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Sample #3 and Chromosome 6
ii <- 1;
chr <- 6;
dfNN <- getFile(dsNNList$normalReg, ii);
betaNN <- extractRawAlleleBFractions(dfNN, chromosome=chr);
plot(betaNN);
title(sprintf("%s (NSA)", getName(betaNN)));
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Plot Normalized by SNP data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Sample #9 and Chromosome 8
ii <- 9;
chr <- 8;
dfN <- getFile(dsNNListSNPs$fracB, ii);
fracBN <- extractRawAlleleBFractions(dfN, chromosome=chr);
dfN <- getFile(dsNNListSNPs$total, ii);
totalN <- extractRawCopyNumbers(dfN, chromosome=chr);
x11();
subplots(2, ncol=1);
plot(fracBN);
title(sprintf("%s", getName(fracBN)));
plot(totalN);
title(sprintf("%s ", getName(totalN)));
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Plot Normalized by Sample data
# - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
# Sample #3 and Chromosome 6
ii <- 9;
chr <- 8;
dfC <- getFile(dsNList$total, ii);
CNC <- extractRawCopyNumbers(dfC, chromosome=chr);
dfN <- getFile(dsNNListSample$fracB, ii);
fracBN <- extractRawAlleleBFractions(dfN, chromosome=chr);
dfN <- getFile(dsNNListSample$total, ii);
totalN <- extractRawCopyNumbers(dfN, chromosome=chr);
x11();
subplots(2, ncol=1);
plot(fracBN);
title(sprintf("%s", getName(fracBN)));
plot(totalN$x, 2^totalN$y);
title(sprintf("%s ", getName(totalN)));
x11();
plot(CNC);
points(totalN, col="green");
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.