Nothing
#' Closeness Centrality
#' @description Computes closeness centrality of each node in a network
#'
#' @param A An adjacency matrix of network data
#'
#' @param weighted Is the network weighted?
#' Defaults to \code{TRUE}.
#' Set to \code{FALSE} for unweighted measure of closeness centrality
#'
#' @return A vector of closeness centrality values for each node in the network
#'
#' @examples
#' # Pearson's correlation only for CRAN checks
#' A <- TMFG(neoOpen, normal = FALSE)$A
#'
#' #Weighted LC
#' LC <- closeness(A)
#'
#' #Unweighted LC
#' LC <- closeness(A, weighted = FALSE)
#'
#' @references
#' Rubinov, M., & Sporns, O. (2010).
#' Complex network measures of brain connectivity: Uses and interpretations.
#' \emph{NeuroImage}, \emph{52}, 1059-1069.
#'
#' @author Alexander Christensen <alexpaulchristensen@gmail.com>
#'
#' @export
#Closeness Centrality----
closeness <- function (A, weighted = TRUE)
{
if(nrow(A)!=ncol(A))
{stop("Input not an adjacency matrix")}
A <- abs(A)
A <- as.matrix(A)
if (!weighted)
{D<-distance(A,weighted=FALSE)
}else if(weighted)
{D<-distance(A,weighted=TRUE)}
C <- vector("numeric", length = ncol(D))
for(i in 1:ncol(D))
{C[i]<-1/sum(D[,i])}
LC<-C*100
LC<-round(LC,3)
names(LC) <- colnames(A)
return(LC)
}
#----
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.