Nothing
#' Caculate the pardon matrix and the estimator on the OGD
OGD=function(X,K,gamma,max.m,chushi,yita,epsilon,truere,method=0){
#' param X is the online single-view data matrix
#' param K is the number of clusters in the input data matrix
#' param yita is the regularization parameter of the algorithm
#' param gamma is the step size of the algorithm
#' param chushi is the initial value for online algorithm
#' param epsilon is the algorithm stopping threshold
#' param max.m is the maximum number of iterations of the algorithm
#' param truere is the true label vector for the calculated dataset
#' param refers to the calculation of the clustering evaluation indicator NMI
#'
#' @return result,NMI,M
#' @export
#'
#' @examples
#' yita=0.5;V=2;K=3;chushi=100;epsilon=1;gamma=0.1;max.m=10;n1=n2=n3=70
#' X1<-rnorm(n1,20,2);X2<-rnorm(n2,25,1.5);X3<-rnorm(n3,30,2)
#' Xv<-c(X1,X2,X3)
#' data<-matrix(Xv,n1+n2+n3,2)
#' data[1:70,2]<-1;data[71:140,2]<-2;data[141:210,2]<-3
#' X<-matrix(data[,1],n1+n2+n3,1)
#' truere=data[,2]
#' lamda1<-0.2;lamda2<-0.8
#' lamda<-matrix(c(lamda1,lamda2),nrow=1,ncol=2)
#' sol.svd <- svd(lamda)
#' U1<-sol.svd$u
#' D1<-sol.svd$d
#' V1<-sol.svd$v
#' C1<-t(U1)%*%t(X)
#' Y1<-C1/D1
#' view<-V1%*%Y1
#' view1<-matrix(view[1,])
#' view2<-matrix(view[2,])
#' X1<-matrix(view1,n1+n2+n3,1)
#' X2<-matrix(view2,n1+n2+n3,1)
#' OGD(X=X1,K=K,gamma=gamma,max.m=max.m,chushi=chushi,yita=yita,epsilon=epsilon,truere=truere,method=0)
changed=1
N<- nrow(X)
J<- ncol(X)
chushi=chushi
oX<-matrix(X[1:chushi,],chushi,J)
oN<- nrow(oX)
oJ<- ncol(oX)
K=K
oukiMatrix <- matrix(0,nrow=oN,ncol=2)
iter=0
yita<-yita
max.iter<-max.m
oM <- matrix(0,nrow=K,ncol=oJ)
oM1 <- matrix(0,nrow=K,ncol=oJ)
set.seed(123)
SJS <- as.vector(sample(1:oN,size=K))
for (k in 1:K) {
oukiMatrix[SJS[k],1] <- k
oM[k,] <- X[SJS[k],]
oM <- matrix(oM,K,oJ)
}
while(changed>0.00000001){
oM1=oM
if(iter >= max.iter)
break
oC1<-matrix(0,oN,K)
oU<-matrix(0,oN,K)
oC2<-matrix(0,oN,1)
for (i in 1:oN){
for(k in 1:K){
ooJ<-matrix(oX[i,]- oM[k,],nrow=1,ncol=oJ)
oC1[i,k]<-exp(-(ooJ%*%t(ooJ))/yita)
}
}
oC2<-apply(oC1,1,sum)
oU<-oC1/oC2
oM2<-matrix(0,K,oJ)
oM3<-c(0,0,0)
for (k in 1:K){
oM2[k,]<-t(oU[,k])%*%oX
oM3<-apply(oU,2,sum)
oM[k,]<-oM2[k,]/oM3[k]
}
for(i in 1:oN){
MaxD <- 10000
Ji <- oukiMatrix[i,1]
for(k in 1:K){
J1<-matrix(oX[i,]- oM[k,],nrow=1,ncol=oJ)
d <- sum((J1%*%t(J1))/oU[i,k])
if(d < MaxD){
MaxD <- d
oukiMatrix[i,1] <- k
oukiMatrix[i,2] <- d
}
}
}
iter=(iter+1)
changed=norm((oM1-oM),type="1")
}
pu<-c(rep(0,K))
P2<-c(rep(0,N))
pU<-matrix(0,nrow=N,ncol=K)
onM<-oM
onU<-matrix(0,nrow=N,ncol=K)
pU1<-matrix(0,nrow=N,ncol=K)
onU=oU
ling<-matrix(0,N-chushi,K)
onU<-rbind(oU,ling)
SJS<-runif(N, min = 0, max = 1)
for (b in (chushi+1):N){
onU[b,1]<-SJS[b]
onU[b,2]<-SJS[N-b+1]
}
DJ<-matrix(0,N,K)
J1m<-matrix(0,N,K)
for (i in (chushi):N){
for (k in 1:K){
dJ <- function(onU){
return(norm(matrix(X[i,]-onM[k,],1,J),type="1")+yita*(log(onU[i,k])+1))
}
DJ[i,k] <- dJ(onU)
DJ[which(DJ==-Inf)]=0
J1 <- function(onU){
return(sum(onU[i,k]*norm(matrix(X[i,]-onM[k,],1,J),type="1")+yita*onU[i,k]*log(onU[i,k])))
}
J1m[i,k]<-J1(onU)
J1m[is.na(J1m)] <- 0
g=0
while(TRUE){
gradient = DJ[i,k]
last_onU = onU
onU[i,k] = onU[i-1,k] - gamma * gradient
g <- g+1
if (abs(J1m[i,k] - J1m[i-1,k]) < epsilon){
break
}
}
}
}
for (i in 1:N){
k1<-which.max(onU[i,])
P2[i]<-k1
pu[k1]<-1
pU1[i,]<-pu
pu<-c(rep(0,K))
}
if(method==0){
ccc<-P2
kmfrequency<-as.data.frame(table(ccc))
kf1<-kmfrequency$Freq/length(ccc)
H_indexre<-(-sum(kf1*log(kf1)))
tfrequency<-as.data.frame(table(truere))
kf2<-tfrequency$Freq/length(truere)
H_truere<-(-sum(kf2*log(kf2)))
cfrequency<-as.data.frame(table(paste(ccc,truere)))
kf3<-cfrequency$Freq/length(paste(ccc,truere))
H_paste<-(-sum(kf3*log(kf3)))
MI<-H_indexre+H_truere- H_paste
NMI<-MI/sqrt(H_indexre* H_truere)
}
return(
list(result=P2,NMI=NMI,M=onM)
)}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.