inst/models/nightly/RAM-3factor-48Indicators-covdata.R

library(OpenMx)

options(width=100)
set.seed(10)

# ---------------------------------------------------------------------
# Data for factor model.

numberSubjects <- 1000
numberFactors <- 3
numberIndPerFactor <- 16
numberIndicators <- numberIndPerFactor*numberFactors # must be a multiple of numberFactors

XMatrix <- matrix(rnorm(numberSubjects*numberFactors, mean=0, sd=1), numberSubjects, numberFactors)

tLoadings <- c(1, seq(.5, .9, length.out=(numberIndPerFactor-1)), rep(0, numberIndPerFactor*2),
							 rep(0, numberIndPerFactor*1), 1, seq(.5, .9, length.out=(numberIndPerFactor-1)), rep(0, numberIndPerFactor*1),
							 rep(0, numberIndPerFactor*2), 1, seq(.5, .9, length.out=(numberIndPerFactor-1)))
BMatrix <- matrix(tLoadings, numberFactors, numberIndicators, byrow=TRUE)
UMatrix <- matrix(rnorm(numberSubjects*numberIndicators, mean=0, sd=1), numberSubjects, numberIndicators)
YMatrix <- XMatrix %*% BMatrix + UMatrix

cor(XMatrix)

dimnames(YMatrix) <- list(NULL, paste("X", 1:numberIndicators, sep=""))

round(cor(YMatrix), 3)
round(cov(YMatrix), 3)

indicators <- paste("X", 1:numberIndicators, sep="")
totalVars <- numberIndicators + numberFactors

# ----------------------------------
# Build an orthogonal simple structure factor model

latents <- paste("F", 1:numberFactors, sep="")

uniqueLabels <- paste("U_", indicators, sep="")
meanLabels <- paste("M_", latents, sep="")
factorVarLabels <- paste("Var_", latents, sep="")

latents1 <- latents[1]
indicators1 <- indicators[1:numberIndPerFactor]
loadingLabels1 <- paste("b_F1", indicators[1:numberIndPerFactor], sep="") 
latents2 <- latents[2]
indicators2 <- indicators[numberIndPerFactor+(1:numberIndPerFactor)]
loadingLabels2 <- paste("b_F2", indicators[numberIndPerFactor+(1:numberIndPerFactor)], sep="") 
latents3 <- latents[3]
indicators3 <- indicators[(2*numberIndPerFactor)+(1:numberIndPerFactor)]
loadingLabels3 <- paste("b_F3", indicators[(2*numberIndPerFactor)+(1:numberIndPerFactor)], sep="") 

threeFactorOrthogonal <- mxModel("threeFactorOrthogonal",
																 type="RAM",
																 manifestVars=c(indicators),
																 latentVars=c(latents,"dummy1"),
																 mxPath(from=latents1, to=indicators1, 
																 			 arrows=1, connect="all.pairs",
																 			 free=TRUE, values=.2, lbound=0, ubound=5,
																 			 labels=loadingLabels1),
																 mxPath(from=latents2, to=indicators2, 
																 			 arrows=1, connect="all.pairs",
																 			 free=TRUE, values=.2, lbound=0, ubound=5,
																 			 labels=loadingLabels2),
																 mxPath(from=latents3, to=indicators3, 
																 			 arrows=1, connect="all.pairs",
																 			 free=TRUE, values=.2, lbound=0, ubound=5,
																 			 labels=loadingLabels3),
																 mxPath(from=latents1, to=indicators1[1], 
																 			 arrows=1, 
																 			 free=FALSE, values=1),
																 mxPath(from=latents2, to=indicators2[1], 
																 			 arrows=1, 
																 			 free=FALSE, values=1),
																 mxPath(from=latents3, to=indicators3[1], 
																 			 arrows=1, 
																 			 free=FALSE, values=1),
																 mxPath(from=indicators, 
																 			 arrows=2, 
																 			 free=TRUE, values=.2, 
																 			 labels=uniqueLabels),
																 mxPath(from=latents,
																 			 arrows=2, 
																 			 free=TRUE, values=.8, 
																 			 labels=factorVarLabels),
																 # mxPath(from="one", to=indicators, 
																 # 			 arrows=1, free=FALSE, values=0),
																 # mxPath(from="one", to=c(latents), 
																 # 			 arrows=1, free=TRUE, values=.1, 
																 # 			 labels=meanLabels),
																 mxData(observed=cov(YMatrix),type="cov",numObs=1000)#,means=colMeans(YMatrix))
)

threeFactorOrthogonalOut <- mxRun(threeFactorOrthogonal)
summary(threeFactorOrthogonalOut)

# Compare with vs. without analytic gradients ####
mxOption(NULL,"Analytic gradients","Yes"); mxOption(NULL,"Analytic RAM derivatives","Yes")
foo <- mxRun(threeFactorOrthogonal)
mxOption(NULL,"Analytic gradients","No"); mxOption(NULL,"Analytic RAM derivatives","No")
bar <- mxRun(threeFactorOrthogonal)
omxCheckCloseEnough(foo$output$fit, bar$output$fit, .5)
if(0){
	omxCheckTrue(summary(foo)$wallTime < summary(bar)$wallTime)
}
summary(foo)$wallTime; summary(bar)$wallTime
if(0){
	omxCheckTrue(foo$output$iterations <= bar$output$iterations)
}
foo$output$iterations; bar$output$iterations
omxCheckTrue(foo$output$evaluations < bar$output$evaluations)
foo$output$evaluations; bar$output$evaluations

mxOption(reset=TRUE)

Try the OpenMx package in your browser

Any scripts or data that you put into this service are public.

OpenMx documentation built on June 8, 2025, 9:33 p.m.